
Abstract: National and international assess-
ments indicate that U.S. students lose ground
in mathematics as they progress into middle
and high school. It is suggested that the
organization of traditional mathematics text-
books, which form the backbone of mathe-
matics instruction, hinders acquisition of the
foundational skills necessary for success in
higher mathematics, thereby leading to low
math performance. Traditional mathematics
textbooks are organized into a spiral design
where many topics are covered, but none
are covered in depth. An alternative to the
spiral organization, which is unique to Direct
Instruction programs, is the strand design.
Textbooks organized around a strand design
focus on a relatively small number of topics
over a long period of time. As topics are
mastered, they are integrated into new
strands that represent increasingly complex
mathematical concepts. This article examines
the disadvantages of the spiral design and
shows how organizing textbooks into strands
can increase the effectiveness of mathemat-
ics curricula. 

Mathematics curricula are typically organized

into a spiral design where numerous topics are

revisited every year. Despite its prevalence,

some educators are critical of the spiral design

and, as far back as 1989, the National Council

of Teachers of Mathematics noted the need to

change the “repetition of topics, approach, and

level of presentation in grade after grade” (p.

66). An alternative to the spiral curriculum is

the strand curriculum where topics are treated

in depth over a long period of time. Design of

instruction can have a powerful effect on stu-

dent achievement (Carnine, 1990), and the

dismal state of achievement in mathematics

among youth in this country warrants scrutiny

of the spiral versus strand curricula.

National and international comparisons repeat-

edly indicate that U.S. children lack funda-

mental mathematical skills. The National

Assessment of Educational Progress (NAEP)

was administered to 4th, 8th, and 12th graders

in the United States in 1996 and 2000 (U.S.

Department of Education, 2001a). Results of

the NAEP indicated that scores have steadily

increased over the past 20 years. However, the

gains for 4th graders were much higher than

the gains for 8th- or 12th-grade students.

There appears to be a slump in math achieve-

ment that begins shortly after fourth grade and

continues into high school. The Third

International Mathematics and Science Study

(TIMSS) confirmed this phenomenon. The

TIMSS was administered in 1995 to more

than 500,000 students in 41 countries at three

age levels (Masini & Taylor, 2000) and again

to eighth graders in 1999 (U.S. Department of

Education, 2001b). No other country had a

sharper drop in math ranking than U.S. chil-

dren (Loveless & DiPerna, 2000). It appears

that U.S. students do not start out behind but

fall behind during the middle-school years. As

the British weekly, The Economist, put it: “The

longer children stay in American schools, the

worse they seem to get” (America’s Education

Choice, 2000, p. 17).
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Diverse learners fare the worst. Socioeconomic

status accounted for 40% of the variance in

scores of children in the United States, but it

accounted for only 20% of the variance across

all the participating TIMSS countries

(Schmidt, Houang, & Cogan, 2002). This dis-

parity is illustrated by the fact that 36 of the

41 participating countries outperformed the

District of Columbia in mathematics, but only

6 countries scored higher than eighth-grade

students in Iowa and Nebraska (Berliner,

2001.) Similarly, socioeconomic status

accounted for about 60% of the difference in

NAEP scores (Masini & Taylor, 2000). It

appears that children who are advantaged do

well, while others do not. Similar results occur

in school districts around the country. Despite

the efforts of local administrators, students of

color and students from low-income homes

have made few gains on basic skills exams in

mathematics (Totso & Welsh, 2003).

Poorly designed curricula are seldom consid-

ered factors in creating educational inequali-

ties. However, an analysis of mathematical

concepts considered essential in Grades 1–8

revealed interesting differences between top

achieving countries and the United States

(Schmidt et al., 2001). Schmidt et al. (2002)

found that top achieving countries covered a

limited number of topics at each grade level

and covered them for about 3 years.

Foundation topics, such as whole number con-

cepts, were introduced in the early grades, and

more sophisticated mathematical topics were

gradually covered in the later grades. No such

logical progression was apparent in the United

States. Prerequisite knowledge was not neces-

sarily introduced first. Many more topics were

considered essential at each grade level. In

fact, the average duration of each topic was 6

years, suggesting that in the United States

topics are covered superficially over a longer

period of time. The result is that our text-

books are a “mile wide [and] an inch deep”

(Schmidt et al., 2002, p. 13).

The design of textbooks is important because

they form the backbone of education.

Although good teachers provide instructional

opportunities that go beyond textbooks, 75%

to 90% of classroom instruction is organized

around textbooks (Tyson & Woodward, 1989;

Woodward & Elliott, 1990). As Farr, Tulley, and

Powell (1987) noted, “Textbooks dominate

instruction in elementary and secondary

schools” (p. 59). Most textbooks have a similar

appearance. This similarity occurs because 22

states, including most notably California and

Texas, have statewide adoption procedures

that require centralized textbook adoption.

Approval by an adoption state is very lucrative

for publishers; consequently they tailor their

textbooks to meet the requirements of the big

adoption states. The result is that textbooks

published by different companies look much

the same. This similarity would not be a prob-

lem if math textbooks were uniformly good,

but unfortunately the design of traditional

textbooks is flawed (Carnine, 1990; Carnine,

Jitendra, & Silbert, 1997). 

Textbooks may be poorly designed in a num-

ber of ways, and there is little agreement on

what constitutes an ideal mathematics curricu-

lum. Some mathematicians are critical of

reform efforts known as constructivism (Open

letter to United States Secretary of Education,

Richard Riley, 1999), especially the de-empha-

sis on arithmetic algorithms. Some math edu-

cators claim that current reform efforts are

insufficient (Battista, 1999). This article

examines one aspect of curriculum design that

is seldom mentioned in the debate—the dif-

ference between the spiral curriculum that is

common to both traditional and constructivist

mathematics textbooks and the strand curricu-

lum that is unique to Direct Instruction pro-

grams. Four disadvantages of the spiral design

will be discussed. Examples from Connecting
Math Concepts (CMC; Engelmann, Carnine,

Kelly, & Engelmann, 1996), a Direct

Instruction mathematics program, will be used

to explain how the strand curriculum elimi-
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nates the disadvantages of traditional basal

textbooks organized in a spiral.

Spiral Curriculum
Textbooks organized around a spiral design are

organized into 10–20 chapters or units that

spiral for several years. Many topics are cov-

ered every year including place value, money,

time, measurement, graphing, addition, sub-

traction, multiplication, division, fractions,

decimals, geometry, patterns, probability, and

statistics. Ratios, proportions, percents, num-

ber theory, integers, and the coordinate plane

are added in the sixth-grade and middle-school

textbooks. Concepts appear and are taught,

then they disappear only to return the follow-

ing year.

Scott Foresman-Addison Wesley Math (SF-AW;

Charles, Barnett, et al., 1999) is representative

of traditional basal mathematics textbooks.

Jitendra, Salmento, and Haydt (1999)

reviewed seven mathematics basal programs

for adherence to nine instructional design cri-

teria when teaching borrowing in subtraction

across zeroes. The criteria included clear

objectives, the absence of extraneous concepts

or skills, adequate preteaching of prerequisite

skills, explicitness, good use of instructional

time, appropriate teaching examples, adequate

practice, sufficient review, and effective feed-

back. SF-AW received 88.9% of the total possi-

ble points for adherence to the authors’ design

of instruction criteria. No text received a

higher score, although one basal received the

same score, suggesting that SF-AW is better

than some and no worse than any of the popu-

lar mathematics basals, all of which are organ-

ized in a spiral design. 

Examination of the scope and sequence in first

through sixth grade reveals some of the prob-

lems with the spiral design. Two math con-

cepts were selected, addition/subtraction and

fractions, to illustrate the difference between

the spiral and strand curriculum. Figure 1

shows the scope and sequence for these two

important math concepts across the elemen-

tary-grade levels in SF-AW and CMC, which is

organized in a strand design. SF-AW intro-

duces addition/subtraction concepts in first

grade in chapters 3, 4, 6, 12, and 13.

Thereafter, addition/subtraction concepts are

revisited every fall, except in second grade

when they are covered in both fall and spring.

Addition/subtraction of whole numbers makes

its last appearance in fifth grade.

Fractions tend to spiral later in the year and

with less frequency. Fractions first appear in

second grade in chapter 12. Then they appear

in third grade in chapter 10; fourth grade in

chapters 9 and 10; fifth grade in chapters 7, 8,

and 9; and sixth grade in chapters 6 and 7.

Two chapters are devoted to fractions in each

of two middle-school textbooks as well.

Although the intent is to treat each concept

with increasing depth at successive grade lev-

els, the functional result is that students

acquire a superficial understanding of math

concepts. The spiral design hinders student

learning by (a) treating topics superficially, (b)

introducing concepts at an inappropriate rate,

(c) minimizing academic learning time, and

(d) providing insufficient cumulative review.

These four limitations to the spiral design will

be described below followed by a discussion of

how the strand curriculum addresses each of

those disadvantages.

Topics
In a spiral curriculum, many topics are covered

but only briefly. On the average, teachers

devote less than 30 min of instructional time

across an entire year to 70% of the topics they

cover (Porter, 1989). The result of teaching for

exposure is that many students fail to master

important math concepts.

For example, SF-AW teaches fractions in

chapter 10 of the third-grade text. Students

spend 1 week exploring the concept of equal
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parts of fractions and learning to write, order,

and compare fractions. Then they spend 1

week exploring fractions as sets, mixed num-

bers, and addition and subtraction of frac-

tions and 1 week on customary linear

measurement. After the 3-week unit is com-

pleted, students are exposed to the following

math concepts before they ever see fractions

again in fourth grade: decimals, metric linear

measurement capacity, weight, temperature,

probability, reading and making graphs, math

facts, place value, time, addition, subtrac-

tion, money, multiplication, division, solids,

triangles, polygons, quadrilaterals, perimeter,

area, and volume. This laundry list of topics

covered in third and fourth grade leaves little

doubt that children are exposed to so many

topics that there is little chance that they

will master any of them. With no review and

so much intervening information, it is not

surprising that fourth-grade students remem-

ber little about fractions from third grade

and require the reteaching that is built into

spiral curricula. 

To illustrate further, the concept of “fractions

equal to 1” is essential not only for finding

common denominators and simplifying frac-

tions but also for solving ratios and proportions

(Carnine et al., 1997). SF-AW first introduces

“fractions equal to 1” in third grade in one les-

son. Story problems are used to promote the

understanding that “you can use fractions to

name equal parts of a whole” (Charles,

Barnett, et al., 1999, p. 414). A year later,

“fractions equal to 1” are covered in one item

in the lesson on mixed numbers when a prob-

lem asks, “How many 1/4 strips in 1?” (p.

392). Students spend 2 days on equivalent

fractions in fourth grade. In fifth grade they

are expected to use “fractions equal to 1” to

find equivalent fractions, and in sixth grade

they finally use “fractions equal to 1” to solve

addition/subtraction of fractions with unlike

denominators. This brief, yearly exposure to

the concept of “fractions equal to 1” makes it

highly unlikely that students will remember

these difficult, yet essential, concepts from

year to year.
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Scott Foresman-Addison Wesley spiral curriculum versus 
Connecting Math Concepts strand curriculum.



The fact that fractions are taught at the end of

the text in second, third, and fourth grade fur-

ther reduces students’ opportunity to learn

fraction concepts. If the teacher falls behind,

or if end-of-the-year activities reduce the

amount of time allocated for math instruction,

the topic may not be covered at all. Not sur-

prisingly, both Course A and Course B of

Middle School Math (Charles, Dossey,

Leinwand, Seeley, & Vonder Embse, 1999)

include two chapters devoted to fractions, sug-

gesting that publishers anticipate that middle-

school students will not have mastered basic

fraction concepts and operations.

For the lucky students who learn fractions the

first time, the repetition represents wasted

instructional time. For the students who did

not learn it the first time, the problem is more

insidious. There is never any bottom line for

mastery so teachers are unconcerned when

students don’t “get it” in second grade

because they will “get it” again in third,

fourth, or even fifth grade. Students learn that

if they don’t understand something, they just

need to “lie low” for a few days until the topic

goes away.

Rate 
Another problem with the spiral design is that

the rate for introducing new concepts is often

either too fast or too slow. All concepts are

allotted the same amount of time whether they

are easy or difficult to master. Units are approx-

imately the same length, and each topic within

a unit is 1 day’s lesson. For example, the

fourth-grade text of SF-AW allocates exactly

the same amount of time to addition/subtrac-

tion of fractions with like denominators and

addition/subtraction with different denomina-

tors—1 day for addition and 1 day for subtrac-

tion. Assuming the math period is the same

length of time, some days there will be too

much time (leading to wasted instructional

time), and some days there will not be enough

time to introduce, let alone master, the con-

cept. The fact that an entire class period must

be devoted to a single concept makes it diffi-

cult to sequence instruction to ensure that stu-

dents acquire necessary preskills before

introducing a difficult skill like addition/sub-

traction of fractions with unlike denominators.

Academic Learning Time
Academic learning time has been defined as

the amount of instructional time during which

students are on-task and experiencing success.

Research suggests that academic learning time

is positively associated with academic achieve-

ment (Fisher et al., 1980; Good & Grouws,

1979; Rosenshine, 1980; Stallings, 1980).

There are wide variations in the amount of

time that is allocated for mathematics (Porter,

1989), and even greater variations in students’

opportunities to learn during allocated time

(Carnine, Jones, & Dixon, 1994). 

When the rate for introducing new content is

inappropriate, academic learning time may

decrease because students are either (a)

unsuccessful with new and difficult content,

or (b) bored by the slow pace and redundancy.

Often, an entire math period (30–40 min) is

too long to spend on a single concept. Either

the teacher presentation will be too long or

the amount of independent work will be tire-

some. Students may lose interest, resulting in

high rates of off-task behavior and less aca-

demic learning time. 

Many mathematics programs avoid this prob-

lem by including a variety of “fun” activities

that may or may not be related to the math

topic of the day. The obvious problem with

this approach is that it decreases the amount

of functional instructional time, which also

reduces academic learning time. Whether

instructional time is lost because students

become bored by copious amounts of seatwork

or because the amount of time actually allo-

cated to mathematics instruction is decreased

by frivolous activities, the result is less aca-

demic learning time, which has a negative

effect on academic achievement.
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Review
Another disadvantage of the spiral design is

that it does not promote sufficient review

once units are completed. There may be some

review of previously introduced topics within

the chapter, but once students move on to the

next chapter previous concepts may not be

seen again until they are covered the following

year. Distributed review facilitates mastery

more effectively than massed practice

(Dempster, 1991) because new concepts are

reinforced over time. Carnine, Dixon, and

Kameenui (1994) identified four components

of effective review. It must be sufficient to

promote fluency, distributed over time, cumu-

lative with new information integrated into

more complex skills, and varied enough to

facilitate generalization.

The teacher’s manual for the third-grade level

of SF-AW provides one optional “skills prac-

tice” worksheet that includes fractions prob-

lems. There is also one activity in the last

lesson in the text where students must write

probabilities as fractions. There are several

problems with this amount and type of review.

First, one optional worksheet is not sufficient

to assure students can perform tasks with frac-

tions as introduced in the previous chapters,

and it is certainly not distributed over time.

The activity with probability could provide

integrated and varied practice that would help

students learn the relationship between frac-

tions as ratios and fractions as part of an area

or set (which is how fractions were introduced

previously), assuming that they possessed all

the necessary preskills and were systematically

guided toward that learning. As presented, it

serves little purpose. This author was unable

to find a single review of fractions in the

fourth-grade text prior to the chapter on frac-

tions. Students do make a pinwheel by divid-

ing a square into four equal parts in chapter 4,

but fractions are not explicitly mentioned.

In all fairness, there is slightly more review of

addition/subtraction concepts than there is of

fraction concepts. The text includes cumulative

review, mixed review, and test preparation in

addition to the review and practice pages at the

end of each section. Previously learned problem

types are seldom systematically incorporated

into new, more complex mathematical concepts.

It would be very difficult to provide integrated

review when so many unrelated and discrete

topics need to be covered. The most common

form of review in a spiral curriculum consists of

isolated problems on homework assignments. 

The spiral curriculum is flawed because it lim-

its student opportunities to master critical

mathematical concepts. Exposure to many

concepts rather than emphasis on a few key

concepts may lead to a superficial understand-

ing of mathematical skills that are critical for

learning high level math concepts. The spiral

design also makes it difficult to control the

rate at which concepts are introduced and to

structure allocated time to maximize academic

learning time. Finally, the spiral design does

not lend itself to review that is calculated to

provide both mastery and generalization of

previously learned mathematical skills. 

Strand Curriculum
The alternative to a spiral design is the inte-

grated, strand curriculum. An integrated strand

curriculum avoids the shortcomings of a spiral

curriculum. Each lesson is organized around

multiple skills or topics rather than around a

single skill or topic. Each skill/topic is

addressed for only 5 to 10 min in any given

day’s lesson but is revisited day after day for

many lessons. Organizing lessons so that

skills/topics are revisited for a few minutes a

day over many days is referred to as a strand

organization. Figure 2 provides a graphic illus-

tration of the spiral versus the strand curricu-

lum (Snider & Crawford, 2004). Skill strands

are woven together over time to create increas-

ingly complex mathematical understandings. 
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CMC is the only basal mathematics curriculum

that is organized around a strand curriculum. It

is easy to see the difference between CMC and

SF-AW by examining the scope and sequence

for instruction in addition/subtraction and frac-

tions as shown in Figure 1. Addition/subtrac-

tion is introduced in Lesson 11 of Level A

(first grade) of CMC and continues until the

last lesson in that level. Addition/subtraction of

number families and fact memorization begin

at Lesson 10 of Level B (second grade) and

continue throughout the year. Column addition

is taught from Lesson 32–82 and column sub-

traction from 65–115. Level C (third grade)

includes some review and introduces more

complex column addition/subtraction in the

first 40 lessons or so. Instruction after that con-

sists of using addition/subtraction to solve

increasingly complex word problems.

Fractions are not introduced until Level C

(third grade), Lesson 53 and then they appear

in almost every lesson until all fraction con-

cepts are mastered. Fractions appear in Lesson

1 of Level D (fourth grade) and in almost

every lesson thereafter. It is important to reit-

erate that in every lesson, several ongoing top-

ics are covered. For example, Lesson 53 of
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Level C, where fractions are first introduced,

also includes exercises related to place value,

problem solving, number families, multiplica-

tion, the coordinate system, and math facts.

Instruction based on strands avoids all the

problems of the spiral curriculum by (a) treat-

ing a limited number of topics in depth, (b)

varying the rate at which concepts are intro-

duced, (c) maximizing academic learning time,

and (d) providing cumulative and integrated

review of previously learned concepts.

Topics
CMC focuses on a relatively small number of

big ideas. Big ideas include concepts such as

number families, operations with whole num-

bers, “fractions equal to 1,” and using tables to

solve a variety of word problems. Emphasis on

a limited number of big ideas promotes mas-

tery rather than merely teaching for exposure.

Organizing lessons into strands makes it possi-

ble for topics to be treated in depth. The

strand design allows important concepts to be

reinforced over days, weeks, and even years.

Once an important concept is introduced, it

appears in every lesson until it is mastered, at

which point that skill is integrated into a more

sophisticated mathematical concept. Rather

than ignoring difficult math concepts in the

hope that they will “go away,” children learn

that success on today’s lesson ensures success

in the future.

The concept of “fractions equal to 1” provides

a good example of how the strand curriculum

promotes mastery. Connecting the procedure

for finding equivalent fractions to the concept

of “fractions equal to 1” is typically one of the

most difficult topics to teach. For example,

beginning in Level C of CMC, students are

taught that fractions consist of the bottom

number that tells how many parts are in a

whole, and a top number that tells how many

parts are used. From the earliest examples,

students learn the concept that fractions can

be greater than 1, less than 1, or equal to 1.

Students are taught how to apply the concept

by writing fractions equal to 1 (e.g., 4/4 or

7/7). Then students are taught that numbers

multiplied by 1 yield an equivalent value,

which provides an explicit strategy for finding

equivalent fractions. Students understand the

new concept because “fractions equal to 1” are

very familiar. Students continue to apply the

strategy of multiplying by a “fractions equal to

1” in increasingly complex ways. In Level E

(fifth grade) when students add and subtract

unlike fractions, they use “fractions equal to

1” to convert the two unlike fractions into

equivalent fractions with common denomina-

tors. CMC continues to apply the idea of mul-

tiplying by a “fractions equal to 1” in other

areas as well. In Level E students use this

same strategy to solve ratio problems and

ratio-table problems. Eventually, students use

ratio tables that employ both mixed fractions

and percentages to solve problems that stump

many adults. The strand design promotes the

depth of understanding that makes this level

of sophistication possible.

Rate
Organizing lessons into strands alleviates a

number of problems found in the spiral cur-

riculum. Unlike a spiral curriculum where one

topic is covered per lesson, a number of differ-

ent topics are covered in each lesson of the

strand curriculum. The rate at which concepts

are introduced can be controlled by the num-

ber of minutes and the number of consecutive

days that are spent on a concept. Less time

each day and more days can be allocated to

particularly difficult topics. Easing into com-

plex strategies, both in terms of quantity and

complexity, avoids overwhelming students

with a barrage of new information (Carnine,

1997). Gradual introduction of complex strate-

gies also provides scaffolding for naïve learners.

The amount of teacher direction can be gradu-

ally decreased until learners can perform a task

independently.

Preskills can be introduced and mastered

before they are needed to perform more com-
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plex operations. The consistency of the rate

and logic of the sequence for introducing frac-

tions over 2 years is only possible because of

the strand design in CMC. For example, before

students are taught to find equivalent frac-

tions by multiplying by a fraction “equal to 1”

(e.g., 3/4 ✕ 2/2 = 6/8), students learn neces-
sary multiplication facts, they learn that 1 can

be expressed as a fraction, and that multiply-

ing by 1 doesn’t change the value of a number.

These concepts are introduced at a reasonable

rate over time, promoting high levels of stu-

dent success, thereby increasing academic

learning time.

Academic Learning Time
In addition to structuring lessons for academic

success, strands promote academic learning

time because a variety of topics are covered

each day. Planned variation promotes on-task

behavior because students are not engaged in

any one type of activity for too long (Colvin &

Lazar, 1997). This variety is more interesting

than spending 30–40 min on a single topic.

Some of the topics are challenging because

they are new and difficult, others are easier

because they are review. This mix of topics

and difficulty promotes academic engaged

time. It is far more interesting to work 20

problems that include a variety of problem

types than to work 20 problems that are all

exactly the same.

Review
The mix of problem types also facilitates

effective review, promoting mastery. Strands

provide sufficient practice over time for stu-

dents to become both accurate and rapid in

their responses. Students work only a small

number of each type of problem in each les-

son, but the problems are presented over a

long period of time. Once students can per-

form a skill without hesitation, that skill is

integrated into other, more complex mathe-

matical procedures. For example, in Level C,

Lesson 53 where fractions are first introduced,

students complete four workbook parts with

guidance from the teacher on number families,

fractions as whole numbers, multiplication

facts, and complex addition facts. Students

work eight different types of problems inde-

pendently, and there are no more than four of

any one type.

An added benefit to providing a variety of

problem types on independent work is that it

teaches persistence, an important test-taking

skill. Low performing students often give up

in frustration as soon as they encounter a diffi-

cult problem. Their lack of persistence can

depress scores on district and statewide

assessments. Teachers can use daily independ-

ent work to teach students to mark any diffi-

cult problems so they can come back to them,

but to keep working.

The strand design promotes student mastery

by focusing on a limited number of big ideas

rather than teaching for exposure. The compo-

nent skills for understanding these big ideas

can be introduced at an appropriate rate to

assure student success. Many topics are cov-

ered in each lesson in strand curricula,

whereas spiral curricula teach one topic per

lesson. Multiple topics eliminate the problem

of not having time to teach difficult concepts

adequately or having too much time in the

math period for easy concepts. Curricula

designed around strands promote academic

engaged time not only because students expe-

rience success but also because an interesting

mixture of activities occurs during any single

math lesson. Mastery and success are also pro-

moted through the use of practice that is dis-

tributed over time and systematically

integrated into more complex skills.

Although this article has focused on the design

of mathematics curricula, it is important to

note that the strand design is not unique to

Direct Instruction mathematics programs. The

strand design is found in other Direct

Instruction programs, such as Expressive Writing
1 and 2 (Engelmann & Silbert, 1983, 1985)

and Reasoning and Writing (Engelmann &
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Silbert, 1991). Every lesson includes instruc-

tion in more than one aspect of written

expression—handwriting fluency, grammar,

mechanics, sentence/paragraph writing, and

thinking skills. The advantages of designing

curricula around strands are not limited to the

content area of mathematics.

Conclusion
The strand curriculum intertwines topics over

time, increasing students’ understanding of

mathematical concepts, much as fibers in a

rope are woven together for strength. Given

the advantages of a strand curriculum, it is not

surprising that numerous research studies have

documented the effectiveness of CMC (Adams

& Engelmann, 1996; Crawford & Snider, 2000;

Przychodzin, Marchand-Martella, Martella, &

Azim, 2004; Tarver & Jung, 1995). What is sur-

prising is that other textbook publishers have

not followed suit.

Results of standardized mathematics assess-

ments suggest that students in the United

States are increasingly deficient in mathemat-

ics as they enter middle and high school.

Masked by the averages lie troubling differ-

ences in performance between white, middle-

class students and less affluent children of

color. If accuracy and fluency in basic skills are

necessary for acquisition of higher-level con-

ceptual mathematical understanding (Wu,

1999), could it be that the gradual decline of

U.S. students in mathematics as they progress

through school is related to the inadequate

foundation laid by traditional elementary

mathematics basal textbooks? 

The spiral design found in the majority of

math textbooks does not promote mastery of

the fundamental mathematical concepts on

which higher-level mathematics are built. The

potential for the strand curricula to improve

textbooks cannot be underestimated. Osborn,

Jones, and Stein (1985) suggested that

“improving textbook programs used in

American schools is an essential step toward

improving American schooling” (p. 10).

Although organizing textbooks around strands

is not a panacea for eliminating poor perform-

ance in mathematics, it is a powerful tool for

improving instruction. Textbooks are part of

teachers’ toolbox and educators need to

improve their “access to tools that work”

(Carnine, 1992, p. 1). The strand design is one

component of an effective instructional pro-

gram that increases opportunities for all chil-

dren to learn. 
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