
In Inferred Functions of Performance and Learning,

authors Engelmann and Steely aim to “identify

what the intelligent system that produces

responses must do to perform as it does” (p.

vii). Included in the authors’ theory is an

explanation of how organisms learn. The the-

ory has important implications for the design

of formal instruction. “If a theory explains the

variables involved in learning, an implication is

that the control or maximization of particular

variables would result in accelerated learning”

(p. 489). This review focuses on several major

aspects of the theory and the implications

they hold for formal instruction.

Infrasystem and Agent
Every task imposes requirements on the task’s

performer, things that the performer must

accomplish in order to perform the task. To

refer to those things that must be accom-

plished, Engelmann and Steely use the term,

functions. A function is any of a group of related

actions that contributes to a larger action. The

authors infer two classes of functions—those

that can be performed reflexively in response

to stimuli, and those that cannot. To adapt one

of the examples presented by the authors—for

a bee that knew that flying to red flowers

would result in obtaining abundant nectar, cer-

tain actions would be performed reflexively.

The bee would reflexively convert incoming

physical stimuli (such as light) into correspon-

ding internal sensory information, and it would

reflexively screen for and recognize the color

red as being a predictor of nectar. Other func-

tions could not be performed reflexively

because they depend on decisions based on

information that varies from situation to situa-

tion. Before being able to obtain the nectar,

the bee would need to take note of the pres-

ent setting. It would need to find the distance

and direction to the flower, and take into

account any relevant features such as wind

speed and obstacles. Not until it included this

variable information in a plan of action, could

the bee produce the behaviors necessary for

obtaining the nectar in the present context.

The authors conclude, as the result of analyzing

such tasks and behaviors, that organisms have a

two-unit performance system. These two units

are entities that are distinguished by their con-

tributions to performance. The infrasystem is the

reflexive unit of the performance system; it

reflexively receives, screens, and enhances sen-

sory input. The agent handles the situation-spe-

cific, consequence-governed functions needed

for planning and producing behaviors.
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The agent does not operate reflexively, so it

needs to be provided with motivation to per-

form. One major function of the infrasystem,

therefore, is to influence the agent to actually

produce the required plans and behaviors. The

infrasystem reflexively enhances the incoming

discriminative stimuli by creating and attach-

ing secondary sensations (such as pain). The

infrasystem then reflexively presents these

enhanced sensations to the agent, motivating

the agent to attend to the stimuli and to pro-

duce a relevant plan of action for the current

setting. The agent responds to the infrasys-

tem’s enhancements by producing behaviors

that increase the reception of positive sensa-

tions or that decrease the reception of nega-

tive sensations. The agent, therefore, produces

operant behaviors. It makes plans, directs

behaviors, and adjusts plans on the basis of

sensory feedback via the infrasystem. All of

these things require decisions by the agent,

and so cannot be performed reflexively.

Content Maps
Another major aspect of the authors’ theory is

the implied existence of content maps. A con-

tent map is a type of blueprint that carries

general information about an organism’s goal

in the present setting. For example, a general

content map for a bee may be the equivalent

of, “Fly to flowers to obtain nectar.” The

authors infer the existence of content maps by

analyzing the behaviors of organisms and the

logical requirements of tasks. A spider of a par-

ticular species may spin webs at various times

and in various places, yet some of its behaviors

or sequences of behaviors remain consistent

across each web, implying that the spider is

working from a general blueprint. All organ-

isms need such general information prior to

forming detailed plans of behavior, plans that

must also take into account the specifics of

the current situation. Without the information

that is contained in content maps, the organ-

ism would not know what behavior to produce,

or when to produce it. Therefore the infrasys-

tem, in response to the presence of a discrimi-

native stimulus, reflexively presents a content

map to the agent. The agent is then able to

apply the content map to the current situation

by specifying the necessary details of behavior

(e.g., for the bee, “Change direction to the

north and fly lower.”).

The essential foundation of all content maps

is the information that allows an organism to

predict a future event based on one or more

features of the current situation. “If a flower is

red, fly to it to obtain nectar” could be a more

specific content map for a bee. The current

red flower predicts future nectar. Apart from

such predictions, the authors say, there is no

basis for behavior. There is no motivation to

respond to the stimulus.

Engelmann and Steely write that a complete

content map specifies a purpose (e.g., “to

obtain nectar”), a discriminative stimulus that

informs the organism what to respond to (e.g.,

a red flower), and a response class (e.g., “fly”).

For many organisms, the information in con-

tent maps may be hardwired. That hardwiring

explains why some organisms can know how to

produce unlearned behaviors—such as a spider

knowing how to construct a web for the first

time. For many of these same organisms, and

for humans, certain content maps may be

incomplete, or even nonexistent. This implies

the need and the ability to learn. “Basic learn-

ing involves the completion of content maps”

(p. 145). To form a complete content map, the

learner must learn what predicts the reinforcer

(e.g., “It is red flowers that predict nectar.”),

or what response strategy is called for (e.g.,

“fly, hover”), or both the predictor and the

response strategy.

The Logical Processes Involved 
in Learning
One problem the learner may be faced with is

that of identifying which features of the envi-

ronment predict specific future outcomes.

The authors use the example of a bee that is

operating on a general content map such as,
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“Fly to flowers to secure nectar.” In their

example, the bee needs to learn the rule that

abundant nectar is predicted only by flowers

that include the single feature of being red.

The authors label this a single-feature predictor,

distinguished from multiple-feature predictors in

which a combination of features (such as tall
and red) are necessary to accurately predict a

positive example. 

The bee uses logical processes to learn the

rule that red flowers predict nectar. The basic

logical process used is that of comparison.

When the bee lands on a flower that has nec-

tar, the bee’s infrasystem enhances all the

recorded features of that flower. Those fea-

tures would include the color red, as well as

other features such as the flower’s size, leaf

shape, and stem height. After just one

encounter with the positive (pollen-laden)

flower, the bee has no logical basis for knowing

which of the observed features predict nectar.

Any single feature, or a combination of fea-

tures, may be the predictor. Only by compar-

ing features of the first flower with features of

other encountered flowers, can the bee draw

logical conclusions about which features pre-

dict pollen-rich, positive flowers. According to

Engelmann and Steely, the basic logical con-

clusions are (a) any features shared by only

positive flowers are retained as possible pre-

dictors, (b) any features held in common by a

positive flower (one with nectar) and a nega-

tive flower (one without nectar) cannot be a

predictor, and (c) any features found only in

negative flowers cannot be predictors.

According to the authors’ bee example, there

are two best possible sequences for encounter-

ing flowers, each sequence allowing the bee to

identify the predictor by comparing just a sin-

gle pair of examples. In one sequence, the

next flower encountered is another positive

flower that shares only one feature in common

with the original positive (i.e., it is red), and

all other features differ. Therefore, red is logi-

cally the only feature that can predict nectar.

In the other sequence, the next flower

encountered lacks nectar, but has exactly the

same set of features as the positive flower

except that it is not red. This minimum, sin-

gle-feature difference between the nectar-rich

flower and the flower without nectar logically

rules out as a predictor every feature except

red. Through such logical processes, the bee,

and other organisms, are able to identify sin-

gle-feature predictors. 

Using similarly detailed examples, the authors

also reveal the more complex logical processes

needed to identify multiple-feature predic-

tors, processes also based on comparison of

features. The authors argue that these

processes are necessary to all organisms,

including humans, which learn and perform.

The human system, however, “is able to learn

more because it represents and retains more”

(p. 347).

Implications for Formal Instruction
The theory of Inferred Functions of Performance
and Learning, although broad enough to

describe all learning, has specific implications

for formal instruction. Engelmann and Steely

carefully draw out the educational implications

of the previously discussed aspects of their

theory (i.e., content maps, the entities of

infrasystem and agent, and the logic involved

in learning).

Content maps are the key to performance of

learned behavior. The process of learning is,

essentially, the process of developing and elab-

orating content maps. By implication, the goal

of formal instruction must be to induce these

content maps. The authors explain that one

way of inducing content maps is by using lan-

guage. With language, the instructor can pres-

ent the learner with a completed content map

in the form of a verbal rule, circumventing the

need for many trials of direct experience with

concrete examples. The instructional designer

can prepare rules that accurately predict the

correct behavior across the full range of exam-

ples that the learner will encounter. Using lan-

guage, the designer is able to focus the
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learner’s attention on the relevant features of

examples and help the learner avoid the dis-

traction of irrelevant features. The conclusion

is that learning can be greatly accelerated by

inducing content maps verbally.

The authors provide general guidelines for

teaching content maps through rules. “The

learning of the rule involves three main steps:

(a) saying the rule, (b) applying the rule to

verbal examples, and (c) applying the rule to

concrete examples. This order is radically dif-

ferent from that of traditional instruction” (p.

437). The authors provide some instances. A

general content-map rule that the authors use

for teaching children about fractions is, “The

bottom number tells how many parts are in

each group; the top number tells how many

parts you use” (p. 444). Teachers and children

then apply this rule to verbal examples and

concrete examples. Through a sufficient range

of examples, including fractions that equal

one, those that are less than one, and those

that are greater than one, children learn the

generalization that the content-map rule

applies to any fraction.

The theory of infrasystem and agent entities

implies that instruction should also be

designed for acceptance by the infrasystem.

The infrasystem works with concrete exam-

ples from which it forms logical conclusions

about predictive features. It also enhances

those predictive features with secondary sen-

sations so as to get the agent to attend to the

features, and to motivate the agent to produce

plans and responses. When verbal content-map

rules are presented to a learner by the teacher,

the predictive features of the map are not ini-

tially endorsed by the learner’s infrasystem.

The infrasystem endorses the rule only after

experiencing sufficient examples of using the

rule to obtain the results predicted by the

rule. This implies the need for instructors to

provide the learner with sufficient practice

examples, so that the learner’s infrasystem will

endorse the rule as being a reliable predictor.

The authors’ theory about the logic involved

in learning has implications for designing

teaching sequences, including those that use

concrete examples. Such instruction should be

designed to take advantage of the learner’s

inbuilt logical processes. To provide clear com-

munication about features, the set of training

examples should be designed to show the min-

imum difference between positives and nega-

tives. This can best be achieved through using

a contrived presentation that carefully

sequences examples so that a change between

one example and the next involves a change in

only one feature. The system is then able to

use the logic that, “If the change results in a

negative example becoming positive, the

change absolutely describes a feature that is

essential to positive classification” (p. 247). 

Throughout Inferred Functions of Performance and
Learning, Engelmann and Steely have placed

both performance and learning under a power-

ful microscope, a microscope consisting of the

authors’ detailed logical deductions and infer-

ences. The result has been a highly magnified

identification of the essential functions of per-

formance and learning. For formal instruction,

the overriding implication of their theory is

that, “The learner’s performance under uncon-

trolled presentations will never be as good as it

would be under carefully controlled condi-

tions” (p. 297). Through their analysis, the

authors have revealed exactly which conditions

to control, why to control them, and how.
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