Level E Correlation to Grade 4 Common Core State Standards for Mathematics

Operations and Algebraic Thinking (4.0A)

Use the four operations with whole numbers to solve problems.

1. Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.

Lesson	71	$\mathbf{7 2}$	$\mathbf{7 4}$		$\mathbf{7 8}$	$\mathbf{8 3}$	$\mathbf{8 6}$	$\mathbf{8 7}$
Exercise 71.9	72.9	74.8	78.9	83.9	86.9	87.9	116	

Operations and Algebraic Thinking (4.0A)

Use the four operations with whole numbers to solve problems.
2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Exercise	71.9	72.9	73.8	74.8	75.9	76.9	77.9	78.9	79.9	80.9

Lesson	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$
Exercise	81.8	$82.6,82.9$	$83.5,83.9$	84.9	85.10	86.9	87.9	88.8	89.7	90.4

Lesson	91	92	93	94	95	108	109	110	111	112
Exercise	91.6	92.3	93.8	94.7	95.9	108.8	109.2	110.7	111.7	112.5

Lesson	$\mathbf{1 1 3}$	$\mathbf{1 1 4}$	$\mathbf{1 1 5}$	$\mathbf{1 1 6}$	$\mathbf{1 1 7}$	$\mathbf{1 1 8}$	$\mathbf{1 2 1}$	$\mathbf{1 2 4}$	$\mathbf{1 2 5}$	$\mathbf{1 2 6}$
Exercise	113.6	114.4	115.6	116.7	117.7	118.7	121.6	124.3	125.3, 125.8	126.6

Lesson	127
Exercise	$127.3,127.7$

Operations and Algebraic Thinking (4.0A)

Use the four operations with whole numbers to solve problems.
3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Lesson	$\mathbf{1 1 3}$	127	$\mathbf{1 3 0}$
Exercise	113.6	127.3	130.7

Operations and Algebraic Thinking (4.0A)

Gain familiarity with factors and multiples.
4. Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.

Lesson	$\mathbf{1 0 0}$	$\mathbf{1 0 1}$	$\mathbf{1 0 2}$	$\mathbf{1 0 3}$	$\mathbf{1 0 4}$	$\mathbf{1 0 5}$	$\mathbf{1 0 6}$	$\mathbf{1 0 7}$	$\mathbf{1 0 8}$	$\mathbf{1 0 9}$
Exercise	100.7	101.2	102.2	103.2	104.2	105.1	106.2	107.2	108.1	109.1

Lesson	110	111	$\mathbf{1 1 2}$	$\mathbf{1 1 3}$	$\mathbf{1 1 4}$	$\mathbf{1 1 5}$	$\mathbf{1 1 6}$	$\mathbf{1 1 7}$	$\mathbf{1 1 8}$	119
Exercise	110.1	111.5	$112.7,112.8$	113.2, 113.8	$114.2,114.8$	$115.7,115.8$	116.7	117.6	118.2, 118.6	$119.1,119.4$

Lesson	$\mathbf{1 2 0}$	$\mathbf{1 2 1}$	$\mathbf{1 2 2}$	$\mathbf{1 2 3}$	$\mathbf{1 2 4}$	$\mathbf{1 2 5}$	$\mathbf{1 2 6}$	$\mathbf{1 2 7}$	$\mathbf{1 2 8}$	$\mathbf{1 2 9}$
Exercise	120.3, 120.7	121.4, 121.6	122.1,	123.1,	$124.1,124.6$	125.2,	126.4,	$127.2,127.7$	128.3,	129.4,
	123.7		125.6	126.7		128.6	129.6			

Lesson	130
Exercise	130.4

Operations and Algebraic Thinking (4.0A)

Generate and analyze patterns.
5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3"and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.

Lesson	112	113	114	115
Exercise	112.7	113.2	114.2	115.7

Student Practice Software: Block 3 Activity 4, Block 4 Activity 5, Block 5 Activity 2

Number and Operations in Base Ten (4.NBT)

Generalize place value understanding for multi-digit whole numbers.

1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$	$\mathbf{8 1}$	$\mathbf{8 2}$
Exercise	71.4	$72.1,72.4$	$75.1,75.4$	76.1	77.1	$78.1,78.3$	$79.1,79.4$	80.4	81.1	$82.1,82.4$

Lesson	$\mathbf{8 4}$	$\mathbf{8 6}$	$\mathbf{9 2}$	$\mathbf{1 1 4}$
Exercise	84.1	86.5	92.1	114.8

Number and Operations in Base Ten (4.NBT)

Generalize place value understanding for multi-digit whole numbers.
2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

Lesson	114	115	116	117	118	119	120	121
Exercise 114.5	115.4	116.4	117.5	118.4	119.5	120.6	121.6	

Number and Operations in Base Ten (4.NBT)

Generalize place value understanding for multi-digit whole numbers.
3. Use place value understanding to round multi-digit whole numbers to any place.

Lesson	$\mathbf{7 9}$	$\mathbf{8 0}$	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$
Exercise	79.5	80.6	81.2	82.5	$83.4,83.9$	$84.6,84.8$	85.6	86.6	87.6	$88.5,88.8$

Lesson	$\mathbf{8 9}$	$\mathbf{9 0}$	$\mathbf{9 1}$	$\mathbf{9 2}$	$\mathbf{9 3}$	$\mathbf{9 4}$	$\mathbf{9 5}$	$\mathbf{9 6}$	$\mathbf{9 7}$	$\mathbf{9 8}$
Exercise	89.7	90.8	$91.3,91.5$	$92.6,92.8$	$93.2,93.9$	$94.2,94.6$	$95.7,95.9$	96.8	97.7	98.5

Lesson	$\mathbf{9 9}$	$\mathbf{1 0 0}$	$\mathbf{1 0 6}$	$\mathbf{1 1 0}$	$\mathbf{1 1 2}$	$\mathbf{1 1 6}$	$\mathbf{1 2 1}$	$\mathbf{1 2 8}$	$\mathbf{1 3 0}$
Exercise	99.5	100.8	106.8	110.7	112.8	116.7	121.6	128.7	130.7

Number and Operations in Base Ten (4.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.
4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Exercise	$71.5,71.7$, 71.9	$72.5,72.9$	$73.5,73.8$	$74.5,74.8$	75.8	$76.7,76.9$	$77.8,77.9$	78.9	79.9	80.9

Lesson	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$
Exercise	81.2	$82.5,82.9$	$83.4,83.9$	$84.6,84.9$	85.10	86.9	87.9	$88.1,88.8$	89.7

Lesson	91	92	93	94	95	96	97	98	99	100
Exercise	91.8	92.8	93.9	94.9	95.9	96.9	$\begin{aligned} & 97.3,97.7, \\ & 97.9 \end{aligned}$	$\begin{aligned} & 98.4,98.5, \\ & 98.7 \end{aligned}$	$\begin{aligned} & \hline 99.5,99.6, \\ & 99.8 \end{aligned}$	$\begin{aligned} & 100.5 \\ & 100.8 \end{aligned}$

Lesson	101	102	103	104	105	106	107	108	109	110
Exercise	$\begin{aligned} & \hline 101.4 \\ & 101.5 \end{aligned}$	$\begin{aligned} & 102.5, \\ & 102.6, \\ & 102.8 \end{aligned}$	$\begin{aligned} & 103.5, \\ & 103.6, \\ & 103.8 \end{aligned}$	$\begin{aligned} & 104.5, \\ & 104.7, \\ & 104.8 \end{aligned}$	$\begin{array}{\|l} 105.7, \\ 105.8 \end{array}$	106.8	107.6	$\begin{aligned} & 108.6, \\ & 108.8 \end{aligned}$	109.7	110.5, 110.7

Lesson	111	112	113	114	115	116	117	118	119	120
Exercise	111.1, 111.3	$\begin{aligned} & \hline 112.2, \\ & 112.6, \\ & 112.8 \end{aligned}$	$\begin{aligned} & 113.3, \\ & 113.8 \end{aligned}$	$\begin{aligned} & \text { 114.1, } \\ & \text { 114.6, } 114.8 \end{aligned}$	$\begin{aligned} & \text { 115.1, } \\ & \text { 115.5, } \\ & \text { 115.8 } \end{aligned}$	$\begin{aligned} & \text { 116.1, } \\ & \text { 116.5, } 116.7 \end{aligned}$	$\begin{aligned} & \text { 117.2, } \\ & \text { 117.3, } 117.7 \end{aligned}$	$\begin{aligned} & \text { 118.1, } \\ & \text { 118.5, } 118.7 \end{aligned}$	119.3, 119.6	$\begin{aligned} & \hline 120.1, \\ & 120.4, \\ & 120.7 \end{aligned}$

Lesson	121	122	123	124	125	126	127	128	129
Exercise	121.2,	122.2,	123.2,	124.4,	125.4,	126.3,	127.3,	128.5,	129.6
	121.6	122.7	123.7	124.7	125.5,	126.6,	$127.6,127.7$	128.7	
				125.8	126.7				

Number and Operations in Base Ten (4.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.
5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 9}$	$\mathbf{8 2}$	$\mathbf{8 3}$
Exercise	$71.4,71.9$	$72.1,72.4$, 72.9	73.8	$74.2,74.8$	$75.1,75.3$, $75.4,75.9$	76.9	77.9	79.9	82.9	83.9

Lesson	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$	$\mathbf{9 1}$	$\mathbf{9 2}$	$\mathbf{9 3}$
Exercise	$84.7,84.9$	$85.5,85.10$	$86.3,86.5$, 86.9	$87.3,87.5$, 87.9	$88.3,88.8$	89.4	$90.4,90.8$	$91.6,91.8$	$92.3,92.5$, 92.8	$93.3,93.8$

Lesson	94	95	96	97	98	99	101	102	103	104
Exercise	94.7	95.6, 95.9	96.7, 96.9	$\begin{aligned} & 97.3,97.4, \\ & 97.9 \end{aligned}$	$\begin{aligned} & 98.4,98.8, \\ & 98.9 \end{aligned}$	$\begin{aligned} & 99.4,99.8, \\ & 99.9 \end{aligned}$	$\begin{aligned} & \text { 101.3, } \\ & 101.8 \end{aligned}$	$\begin{aligned} & \hline 102.5, \\ & 102.8 \end{aligned}$	$\begin{aligned} & 103.5, \\ & 103.8 \end{aligned}$	$\begin{aligned} & \hline \text { 104.3, } \\ & \text { 104.5, } \\ & 104.8 \end{aligned}$

Lesson	105	106	107	108	109	110	111	112	113	114
Exercise	$\begin{aligned} & \text { 105.3, } \\ & \text { 105.7 } \end{aligned}$	106.8	107.9	108.8	109.8	110.6, 110.7	$\begin{array}{\|l\|} \hline \text { 111.4, } \\ \text { 111.6, } 111.7 \end{array}$	$\begin{aligned} & 112.3, \\ & 112.5, \\ & 112.8 \end{aligned}$	$\begin{aligned} & 113.5, \\ & 113.6, \\ & 113.8 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 114.4, } \\ \text { 114.7, } 114.8 \end{array}$

Lesson	$\mathbf{1 1 5}$	$\mathbf{1 1 6}$	$\mathbf{1 1 7}$	$\mathbf{1 1 8}$	$\mathbf{1 1 9}$	$\mathbf{1 2 0}$	$\mathbf{1 2 1}$	$\mathbf{1 2 2}$	$\mathbf{1 2 3}$	$\mathbf{1 2 4}$
Exercise	$115.5,115.6$	$116.5,116.7$	117.7	118.7	$119.3,119.6$	120.1, 120.7	121.6	122.5, 122.7	123.5, 123.7	124.7

Lesson	$\mathbf{1 2 5}$	$\mathbf{1 2 6}$	$\mathbf{1 2 7}$	128	129	130
Exercise	125.8	126.1, 126.7	$127.1,127.3$	128.7	129.6	130.6

Number and Operations in Base Ten (4.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.
6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Exercise	71.9	$72.2,72.9$	$73.2,73.8$	$74.2,74.8$	$75.3,75.9$	76.9	77.9	78.9	79.9	80.9

Lesson	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$
Exercise	81.8	82.9	83.9	$84.7,84.9$	$85.5,85.10$	$86.3,86.5$, 86.9	$87.3,87.5$, 87.9	$88.3,88.8$	89.4	$90.4,90.7$, 90.8

Lesson	91	92	93	94	95	96	97	98	99	100
Exercise	91.3, 91.6	$\begin{aligned} & 92.3,92.5, \\ & 92.8 \end{aligned}$	93.3, 93.8	94.7, 94.9	95.6, 95.9	$\begin{aligned} & 96.6,96.7, \\ & 96.9 \end{aligned}$	97.3, 97.9	98.4, 98.9	$\begin{aligned} & 99.4,99.8, \\ & 99.9 \end{aligned}$	$\begin{aligned} & 100.7 \\ & 100.8 \end{aligned}$

Lesson	101	102	103	104	105	106	107	108	109	110
Exercise	$\begin{aligned} & 101.6, \\ & 101.8 \end{aligned}$	$\begin{aligned} & 102.5, \\ & 102.7, \\ & 102.8 \end{aligned}$	$\begin{aligned} & 103.4 \\ & 103.5 \\ & 103.8 \end{aligned}$	$\begin{aligned} & \hline 104.1, \\ & 104.5, \\ & 104.8 \end{aligned}$	$\begin{aligned} & 105.1, \\ & 105.5, \\ & 105.7, \\ & 105.8 \end{aligned}$	$\begin{aligned} & \hline 106.6, \\ & 106.8 \end{aligned}$	$\begin{aligned} & \hline 107.1, \\ & 107.3, \\ & 107.8,107.9 \end{aligned}$	$\begin{aligned} & 108.1, \\ & 108.3, \\ & 108.7, \\ & 108.8 \end{aligned}$	$\begin{aligned} & \hline 109.1, \\ & 109.2, \\ & 109.5, \\ & 109.6, \\ & 109.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 110.1, \\ 110.6,110.7 \end{array}$

Lesson	111	112	113	114	115	116	117	118	119	120
Exercise	111.4,	112.3,	113.5,	114.2,	115.5,	$116.5,116.7$	$117.6,117.7$	118.2,	$119.3,119.6$	120.7
	$111.6,111.7$	112.5,	113.6,	114.4,	115.6,			118.7		
	112.8	113.8	$114.7,114.8$	$115.7,115.8$						

Lesson	121	122	123	124	125	126	127	128	129	130
Exercise	121.6	122.3, 122.5, 122.7	$\begin{aligned} & 123.3, \\ & 123.5, \\ & 123.7 \end{aligned}$	124.3, 124.5, 124.7	$\begin{aligned} & \text { 125.1, } \\ & \text { 125.3, } \\ & 125.8 \end{aligned}$	$\begin{aligned} & 126.6, \\ & 126.7 \end{aligned}$	$\begin{aligned} & \text { 127.1, } \\ & \text { 127.3, } 127.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 128.1, \\ 128.3, \\ 128.7 \\ \hline \end{array}$	$\begin{aligned} & 129.4, \\ & 129.6 \end{aligned}$	$\begin{aligned} & 130.2, \\ & 130.4 \end{aligned}$

Number and Operations-Fractions (4.NF)

Extend understanding of fraction equivalence and ordering.

1. Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two
fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

Lesson	71	72	73	74	75	76	77	78	79	80
Exercise	71.3	72.3	73.6	74.6	75.9	76.5, 76.8	77.5, 77.9	$\begin{aligned} & 78.3,78.5, \\ & 78.9 \end{aligned}$	79.8, 79.9	80.9

Lesson	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$
Exercise	$81.6,81.8$	$82.6,82.8$, 82.9	$83.7,83.9$	$84.5,84.7$	$85.5,85.10$	$86.3,86.5$, 86.9	$87.3,87.5$, 87.9	$88.3,88.8$	89.4	

Lesson	91	$\mathbf{9 2}$	$\mathbf{9 3}$	$\mathbf{9 4}$	$\mathbf{9 5}$	$\mathbf{9 6}$	$\mathbf{9 7}$	$\mathbf{9 8}$	$\mathbf{9 9}$	$\mathbf{1 0 0}$
Exercise	91.6	$92.3,92.8$	93.4	94.5	$95.4,95.9$	$96.6,96.9$	$97.4,97.9$	$98.8,98.9$	$99.4,99.6$, 99.9	100.5, 100.8

Lesson	101	102	103	104	105	106	107	108	109	110
Exercise	101.3	$\begin{aligned} & 102.4, \\ & 102.8 \end{aligned}$	$\begin{aligned} & 103.5, \\ & 103.8 \end{aligned}$	$\begin{aligned} & \text { 104.3, } \\ & 104.5 \end{aligned}$	$\begin{aligned} & \hline 105.3, \\ & 105.7, \\ & 105.8 \end{aligned}$	$\begin{aligned} & \text { 106.7, } \\ & 106.8 \end{aligned}$	107.3, 107.8	$\begin{aligned} & \text { 108.3, } \\ & 108.8 \end{aligned}$	$\begin{aligned} & 109.6, \\ & 109.8 \end{aligned}$	110.6, 110.7

Lesson	111	112	113	114	116	119	120	121	122	123
Exercise	$111.4,111.7$	112.8	113.8	114.8	116.7	$119.2,119.6$	120.2, 120.7	121.3	122.5	123.5,
123.7										

Lesson	124	125	126	128
Exercise	124.7	125.8	126.7	128.7

Number and Operations-Fractions (4.NF)

Extend understanding of fraction equivalence and ordering.
2. Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Lesson	95	96	97	98	99	100	101	102	103	104
Exercise	95.2	96.2	97.1	98.2	99.9	100.2	$\begin{aligned} & \hline 101.6, \\ & 101.8 \end{aligned}$	$\begin{aligned} & \hline 102.7, \\ & 102.8 \end{aligned}$	$\begin{aligned} & \hline 103.4, \\ & 103.8 \end{aligned}$	104.8

Lesson	$\mathbf{1 0 5}$	$\mathbf{1 0 6}$	$\mathbf{1 0 7}$	$\mathbf{1 0 8}$	$\mathbf{1 1 1}$	$\mathbf{1 1 5}$	$\mathbf{1 1 8}$	$\mathbf{1 2 4}$	$\mathbf{1 2 9}$
Exercise	105.8	106.1	107.1	108.8	111.7	115.8	118.7	124.7	129.6

Number and Operations-Fractions (4.NF)

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
3. Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$.
a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8$; $21 / 8=1+1+1 / 8=8 / 8+8 / 8+1 / 8$.
c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Exercise 71.9	$72.6,72.9$	$73.2,73.4$	$74.2,74.4$	$75.2,75.3$, 75.5	$76.3,76.9$	$77.4,77.9$	$78.6,78.9$	$79.7,79.9$	80.2	

Lesson	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$
Exercise	$81.7,81.8$	$82.7,82.9$	$83.8,83.9$	$84.4,84.9$	$85.4,85.10$	$86.8,86.9$	87.8	88.2	$89.2,89.7$	90.2

Lesson	$\mathbf{9 1}$	$\mathbf{9 2}$	$\mathbf{9 3}$	$\mathbf{9 4}$	$\mathbf{9 5}$	$\mathbf{9 7}$	$\mathbf{9 8}$	$\mathbf{9 9}$	$\mathbf{1 0 0}$	$\mathbf{1 0 1}$
Exercise	91.8	92.8	93.9	94.9	95.9	97.3	$98.4,98.8$	99.8	100.8	101.8

Lesson	$\mathbf{1 0 2}$	$\mathbf{1 0 3}$	$\mathbf{1 0 4}$	$\mathbf{1 0 5}$	$\mathbf{1 0 6}$	$\mathbf{1 0 7}$	$\mathbf{1 0 8}$	$\mathbf{1 0 9}$	$\mathbf{1 1 0}$	$\mathbf{1 1 1}$
Exercise	102.8	103.8	104.1, 104.8	105.5	106.6, 106.8	$107.7,107.8$	108.5, 108.7, 108.8	109.5, 109.8	110.7	111.7

Lesson	112	113	114	115	116	117	119	121	122	123
Exercise	112.8	113.8	114.8	115.8	116.7	117.7	119.6	$\begin{aligned} & 121.2, \\ & 121.3 \end{aligned}$	$\begin{aligned} & \hline 122.2, \\ & 122.7 \end{aligned}$	$\begin{aligned} & \hline 123.2, \\ & 123.6, \\ & 123.7 \end{aligned}$

Lesson	124	125	127	128	129	130
Exercise	124.3,	125.3,	$127.6,127.7$	128.5	129.1,	130.1,
	124.4,	125.4,			129.6	130.5
	124.7	125.8				

Number and Operations-Fractions (4.NF)

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
a. Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.
b. Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as $6 / 5$. (In general, $n \times(a / b)=(n \times a) / b$.
c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 1}$	$\mathbf{8 5}$
Exercise	71.8	72.6	$73.4,73.6$	$74.4,74.6$	$75.5,75.9$	$76.5,76.9$	78.9	79.9	81.8	85.10

Lesson	89	95	96	97	98	99	100	102	103	104
Exercise	89.7	95.9	96.9	97.9	98.1, 98.3	99.1, 99.2	$\begin{aligned} & \hline 100.6, \\ & 100.8 \end{aligned}$	$\begin{aligned} & \hline 102.3, \\ & 102.4 \end{aligned}$	103.7	104.1

Lesson	$\mathbf{1 0 5}$	$\mathbf{1 0 6}$	$\mathbf{1 0 7}$	$\mathbf{1 0 8}$	$\mathbf{1 0 9}$	110	111	114	116	117
Exercise	105.5	106.6	107.8	108.7	109.5, 109.8	110.7	111.7	114.8	116.7	117.7

Lesson	$\mathbf{1 1 9}$	$\mathbf{1 2 1}$	$\mathbf{1 2 4}$	$\mathbf{1 2 5}$	$\mathbf{1 2 7}$	$\mathbf{1 2 8}$	$\mathbf{1 2 9}$
Exercise	119.6	121.6	124.3, 124.7	125.3, 125.8	127.7	128.1	129.6

Number and Operations-Fractions (4.NF)

Understand decimal notation for fractions, and compare decimal fractions.
5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and 100. For example, express $3 / 10$ as 30/100, and add $3 / 10+4 / 100=34 / 100$.

Lesson	$\mathbf{7 8}$	$\mathbf{1 2 1}$	$\mathbf{1 2 2}$	$\mathbf{1 2 3}$	$\mathbf{1 2 4}$
Exercise	78.3	121.3	122.7	123.2	124.7

Number and Operations-Fractions (4.NF)

Understand decimal notation for fractions, and compare decimal fractions.
6. Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.

Lesson	$\mathbf{7 2}$	$\mathbf{7 4}$	$\mathbf{7 6}$	$\mathbf{7 8}$	$\mathbf{9 6}$	$\mathbf{1 0 4}$	$\mathbf{1 0 6}$	$\mathbf{1 0 8}$	$\mathbf{1 0 9}$	$\mathbf{1 1 4}$
Exercise	72.9	74.8	76.9	78.3	96.9	104.8	106.7	108.8	109.6	114.8

Lesson	$\mathbf{1 1 6}$	$\mathbf{1 2 0}$	$\mathbf{1 2 3}$	$\mathbf{1 2 5}$	$\mathbf{1 2 6}$	$\mathbf{1 2 7}$	$\mathbf{1 2 9}$
Exercise	116.7	120.7	123.7	125.8	126.2	127.5	129.6

Number and Operations-Fractions (4.NF)

Understand decimal notation for fractions, and compare decimal fractions.
7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.

Lesson	110	111	112	113
Exercise	110.2	111.1	112.1	113.1

Student Practice Software: Block 2 Activity 6, Block 3 Activity 1, Block 4 Activity 4

Measurement and Data (4.MD)

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

1. Know relative sizes of measurement units within one system of units including $\mathrm{km}, \mathrm{m}, \mathrm{cm}$; $\mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz} . ; \mathrm{l}, \mathrm{ml}$; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...

Lesson	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 7}$	$\mathbf{8 2}$	$\mathbf{8 4}$	$\mathbf{1 2 6}$	$\mathbf{1 2 7}$	$\mathbf{1 2 8}$
Exercise	74.8	75.9	77.9	82.9	84.9	126.1	127.1	128.1

Measurement and Data (4.MD)

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$	$\mathbf{8 2}$
Exercise	71.9	72.9	73.8	74.8	76.9	77.9	78.9	79.9	80.9	82.9

Lesson	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 5}$	$\mathbf{8 6}$	$\mathbf{8 7}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$	$\mathbf{9 1}$	$\mathbf{9 2}$
Exercise	83.9	84.9	85.10	86.9	87.9	88.8	89.7	90.8	91.8	92.8

Lesson	93	94	105	106	107	108	110	111	112	113
Exercise	93.9	94.9	105.8	106.8	107.7	$\begin{aligned} & \hline 108.5, \\ & 108.8 \end{aligned}$	110.7	111.7	$\begin{aligned} & 112.5, \\ & 112.8 \end{aligned}$	$\begin{aligned} & \hline 113.6, \\ & 113.8 \end{aligned}$

Lesson	$\mathbf{1 1 5}$	$\mathbf{1 1 6}$	$\mathbf{1 1 7}$	$\mathbf{1 1 8}$	$\mathbf{1 2 0}$	$\mathbf{1 2 1}$	$\mathbf{1 2 2}$	$\mathbf{1 2 3}$	$\mathbf{1 2 4}$	$\mathbf{1 2 5}$
Exercise	$115.6,115.8$	116.7	117.7	118.7	120.7	121.6	122.5	123.5, 123.7	124.3, 124.7	125.3, 125.8

Lesson	$\mathbf{1 2 6}$	$\mathbf{1 2 7}$	$\mathbf{1 2 8}$	$\mathbf{1 2 9}$	$\mathbf{1 3 0}$
Exercise	126.6	$127.3,127.6$	128.5	129.3, 129.6	130.5

Measurement and Data (4.MD)

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.

Lesson	$\mathbf{7 1}$	$\mathbf{7 5}$	$\mathbf{8 2}$	$\mathbf{8 5}$	$\mathbf{8 8}$	$\mathbf{8 9}$	$\mathbf{9 0}$	$\mathbf{9 1}$	$\mathbf{9 2}$	$\mathbf{9 3}$
Exercise	71.9	75.9	82.9	85.10	88.3	89.7	90.7	91.3	92.5	93.3

Lesson	$\mathbf{9 4}$	$\mathbf{9 5}$	$\mathbf{9 6}$	$\mathbf{9 7}$	$\mathbf{9 8}$	$\mathbf{9 9}$	$\mathbf{1 0 0}$	$\mathbf{1 0 1}$	$\mathbf{1 0 2}$	$\mathbf{1 0 4}$
Exercise	94.1	95.6	96.7	97.3	98.4	99.8	100.8	101.8	102.8	104.8

Lesson	106	108	110	112	114	117	121	124	125	126
Exercise	106.8	108.8	110.7	112.8	114.8	117.7	121.6	$\begin{aligned} & \hline 124.3, \\ & 124.7 \end{aligned}$	125.3	126.6

Lesson	$\mathbf{1 2 7}$	$\mathbf{1 2 9}$
Exercise	127.3	129.6

Measurement and Data (4.MD)

Represent and interpret data.
4. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8).

Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

Lesson	$\mathbf{1 2 9}$	$\mathbf{1 3 0}$
Exercise	129.3	130.5

Measurement and Data (4.MD)

Geometric measurement: understand concepts of angle and measure angles.
5. Recognize angles as geometric shapes that are formed wherever two rays share a
common endpoint, and understand concepts of angle measurement:
a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.
b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Exercise	71.5	$72.5,72.9$	73.5	74.5	$75.6,75.9$	76.9	$77.6,77.9$	$78.2,78.9$	$79.2,79.9$	80.8

Lesson	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 7}$	$\mathbf{9 0}$	$\mathbf{9 1}$	$\mathbf{9 3}$	$\mathbf{9 5}$	$\mathbf{9 7}$
Exercise	81.8	82.9	83.9	84.9	87.9	90.8	91.8	93.9	95.9	97.9

Lesson	99	103	107	108	109	110	112	113	114	115
Exercise	99.9	103.8	107.4	108.4	$\begin{aligned} & 109.4, \\ & 109.8 \end{aligned}$	110.4	112.4, 112.8	113.4	114.3	$\begin{aligned} & \hline 115.2, \\ & 115.8 \end{aligned}$

Lesson	$\mathbf{1 1 6}$	$\mathbf{1 1 7}$	$\mathbf{1 1 8}$	$\mathbf{1 1 9}$	$\mathbf{1 2 1}$	$\mathbf{1 2 2}$	$\mathbf{1 2 3}$	$\mathbf{1 2 4}$	$\mathbf{1 2 5}$	$\mathbf{1 2 6}$
Exercise	116.6	117.4	118.7	119.6	121.5	122.6	123.4, 123.7	124.2	125.7	126.5, 126.7

Lesson	127	$\mathbf{1 2 8}$	$\mathbf{1 2 9}$
Exercise	127.7	128.4	129.2

Measurement and Data (4.MD)

Geometric measurement: understand concepts of angle and measure angles.
6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.

Lesson	$\mathbf{1 2 1}$	$\mathbf{1 2 2}$	123	$\mathbf{1 2 5}$	126	127	128	129
Exercise	121.5	122.6	123.4	125.7	126.7	127.7	128.4	129.2

Measurement and Data (4.MD)

Geometric measurement: understand concepts of angle and measure angles.
7. Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

Lesson	$\mathbf{7 1}$	$\mathbf{7 2}$	$\mathbf{7 3}$	$\mathbf{7 4}$	$\mathbf{7 5}$	$\mathbf{7 6}$	$\mathbf{7 7}$	$\mathbf{7 8}$	$\mathbf{7 9}$	$\mathbf{8 0}$
Exercise	71.5	72.5	73.5	74.5	75.6	76.9	$77.6,77.9$	78.2	$79.2,79.9$	80.8

Lesson	$\mathbf{8 1}$	$\mathbf{8 2}$	$\mathbf{8 3}$	$\mathbf{8 4}$	$\mathbf{8 7}$	$\mathbf{9 0}$	$\mathbf{9 3}$	$\mathbf{9 7}$	$\mathbf{9 9}$	$\mathbf{1 0 3}$
Exercise	81.8	82.9	83.9	84.9	87.9	90.8	93.9	97.9	99.9	103.8

Lesson	$\mathbf{1 0 9}$	$\mathbf{1 1 2}$	$\mathbf{1 1 5}$	$\mathbf{1 2 3}$	$\mathbf{1 2 4}$	$\mathbf{1 2 6}$
Exercise	109.8	112.8	115.8	123.7	124.2	126.7

Geometry (4.G)

Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

Lesson	95	96	97	100	101	102	103	108	109	110
Exercise	95.3	96.3	97.2	100.1	101.1	102.3	$\begin{aligned} & \hline 103.1, \\ & 103.3 \end{aligned}$	108.4	109.4	110.4

Lesson	111	112	113	114	115	116	117	118	119	120
Exercise	111.7	112.4	113.4	114.3	115.2	116.6	117.4	118.7	119.6	120.5

Lesson	$\mathbf{1 2 2}$	$\mathbf{1 2 5}$	$\mathbf{1 2 6}$	$\mathbf{1 2 7}$	$\mathbf{1 2 8}$	$\mathbf{1 2 9}$	$\mathbf{1 3 0}$
Exercise	122.7	125.7, 125.8	126.5	127.4	128.4, 128.7	129.2, 129.5	130.3

Student Practice Software: Block 5 Activity 1

Geometry (4.G)

Draw and identify lines and angles, and classify shapes by properties of their lines and angles.
2. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.

Lesson	108	109	110	111	112	113	114	115	116	117
Exercise	108.4	109.4	110.4	111.7	112.4	113.4	114.3	115.2	116.6	117.4

Lesson	118	119	122	$\mathbf{1 2 5}$	126	127	128	129	130
Exercise	118.7	119.6	122.7	125.7, 125.8	126.5	127.4	128.7	129.5	130.3

Geometry (4.G)

Draw and identify lines and angles, and classify shapes by properties of their lines and angles.
3. Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

This standard is addressed in the following activities of the Student Practice Software:

- Block 3 Activity 2
- Block 4 Activity 2
- Block 5 Activity 3

Level E Correlation to Grade 4 Common Core State Standards for Mathematics

Operations and Algebraic Thinking (4.0A)

Use the four operations with whole numbers to solve problems.

1. Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.

Lesson	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$
Exercise	$46.4,46.8$	$47.5,47.8$	$48.5,48.8$	49.8	50.9	$51.7,51.10$	52.9	53.8	54.6	55.6

Lesson	$\mathbf{5 6}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 1}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 8}$	$\mathbf{6 9}$
Exercise	56.7	58.7	59.8	61.10	65.5	66.5	68.6	69.5

Operations and Algebraic Thinking (4.0A)

Use the four operations with whole numbers to solve problems.
2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

Lesson	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 6}$	$\mathbf{5 8}$	$\mathbf{5 9}$
Exercise	46.8	47.5	48.5	51.10	$52.5,52.9$	53.5	54.6	56.8	58.8	$59.6,59.8$

Lesson	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$
Exercise	$60.4,60.9$	61.10	62.10	$63.5,63.10$	64.8	65.5	$66.5,66.8$	$67.4,67.10$	68.6	69.5

Lesson	$\mathbf{7 0}$
Exercise	70.8

Operations and Algebraic Thinking (4.0A)

Use the four operations with whole numbers to solve problems.
3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

This standard is first addressed in Lesson 113.

Operations and Algebraic Thinking (4.0A)

Gain familiarity with factors and multiples.
4. Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.

Lesson	32	33	$\mathbf{3 6}$	37	38	39	40
Exercise	32.3	33.3	36.2	37.6	38.6	$39.4,39.8$	$40.3,40.6$

Operations and Algebraic Thinking (4.0A)

Generate and analyze patterns.
5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3"and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.

Lesson	$\mathbf{1 3}$
Exercise	13.3

This standard is addressed further starting in Lesson 112 and in Blocks 3, 4, and 5 of the Student Practice Software.

Number and Operations in Base Ten (4.NBT)

Generalize place value understanding for multi-digit whole numbers.

1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.

Lesson	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 1}$
Exercise	1.4	$2.5,2.8$	$3.5,3.7$	$4.1,4.5$	$5.3,5.5$, 5.9	6.10	7.10	8.11	9.10	11.10

Lesson	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$
Exercise	12.11	13.10	14.9	15.9	16.10	17.10	18.9	19.10	20.10	21.10

Lesson	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$		$\mathbf{2 9}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$
Exercise	23.8	24.8	25.9	26.9	29.9	31.4	32.4	33.5	34.5	$35.5,35.9$

Lesson	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$
Exercise	36.4	$37.4,37.9$	38.4	$39.5,39.9$	$40.4,40.7$	$41.2,41.4$	$42.5,42.10$	43.4	44.3	$45.1,45.4$, 45.8

Lesson	$\mathbf{4 6}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 7}$	$\mathbf{5 9}$
Exercise	46.3	48.4	49.4	50.3	51.3	53.3	54.3	55.4	57.3	59.3

Lesson	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$
Exercise	60.3	61.4	$62.1,62.4$	63.4	64.4	65.3	66.3	68.4	69.3	70.4

Number and Operations in Base Ten (4.NBT)

Generalize place value understanding for multi-digit whole numbers.
2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

Lesson	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Exercise	1.4	2.8	3.7	4.5	$5.5,5.7$	$6.4,6.9$	7.7	8.7	9.4	10.7

Lesson	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 9}$	$\mathbf{2 1}$	$\mathbf{2 6}$	$\mathbf{2 8}$
Exercise	11.7	12.6	13.7	$15.2,15.4$	$16.2,16.8$	17.6	19.8	21.2	26.5	28.4

Lesson	$\mathbf{3 1}$	$\mathbf{6 5}$	$\mathbf{6 6}$
Exercise	$31.3,31.7$	65.4	66.4

Number and Operations in Base Ten (4.NBT)

Generalize place value understanding for multi-digit whole numbers.
3. Use place value understanding to round multi-digit whole numbers to any place.

This standard is first addressed in Lesson 79.

Number and Operations in Base Ten (4.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.
4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.

Lesson	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Exercise 3.9	$4.7,4.9$	$5.1,5.4$, $5.5,5.9$	$6.4,6.5$, $6.7,6.10$	$7.4,7.5$	8.9	$9.1,9.8$	$10.6,10.9$	11.10	$12.5,12.8$, 12.11	

Lesson	13	14	15	16	17	18	19	20	21	22
Exercise	$\begin{aligned} & 13.4,13.9, \\ & 13.10 \end{aligned}$	$\begin{aligned} & \hline \text { 14.4, 14.6, } \\ & \text { 14.8, 14.9 } \end{aligned}$	$\begin{aligned} & \hline 15.5,15.6, \\ & 15.9 \end{aligned}$	$\begin{aligned} & 16.5,16.9, \\ & 16.10 \end{aligned}$	$\begin{array}{\|l\|} \hline 17.4,17.7, \\ 17.10 \end{array}$	$\begin{aligned} & 18.6,18.7, \\ & 18.9 \end{aligned}$	19.3, 19.10	20.2, 20.10	21.2, 21.10	22.2, 22.9

Lesson	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$
Exercise	$23.6,23.8$	24.8	$25.2,25.9$	$26.5,26.7$, 26.9	$27.4,27.8$	$28.5,28.6$, 28.9	$29.6,29.9$	30.8	$31.3,31.8$, 31.10	$32.5,32.10$

Lesson	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$
Exercise	$33.7,33.10$	$34.7,34.9$	$35.7,35.9$	$36.3,36.6$, 36.11	$37.3,37.8$, 37.9	$38.2,38.7$, 38.9	$39.3,39.7$, 39.9	$40.5,40.9$	$41.5,41.6$, 41.9	$42.7,42.10$

Lesson	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$
Exercise	$43.5,43.9$	$44.4,44.9$	45.8	46.9	47.10	48.10	49.10	50.9	51.10	52.9

Lesson	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$
Exercise	53.9	54.9	55.9	$56.2,56.8$	$57.2,57.8$	58.8	59.8	60.9	61.10	62.10

Lesson	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$
Exercise	63.10	64.8	$65.5,65.8$	66.8	67.10	$68.7,68.9$	69.8	$70.5,70.6$, 70.8

Number and Operations in Base Ten (4.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.
5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Lesson	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 2}$
Exercise	2.5	3.5	4.1	5.3	$6.1,6.10$	7.10	8.1	9.10	10.1	$12.1,12.11$, 12.15

Lesson	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$
Exercise	$13.1,13.10$	$14.1,14.9$	15.9	$16.5,16.10$	$17.5,17.10$	18.9	$19.4,19.10$	20.10	$21.5,21.7$, 21.10	$22.4,22.5$

Lesson	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$
Exercise	$23.2,23.8$	24.8	$25.1,25.7$, 25.9	$26.3,26.9$	$27.3,27.6$	$28.3,28.7$, 28.9	$29.4,29.8$, 29.9	$30.1,30.5$, 30.8	$31.4,31.6$, 31.10	$32.4,32.7$, 32.10

Lesson	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$
Exercise	$33.5,33.8$, 33.10	$34.5,34.8$, 34.9	$35.5,35.9$	$36.4,36.11$	$37.4,37.9$	$38.4,38.9$	$39.5,39.9$	$40.4,40.7$, 40.9	$41.2,41.4$, 41.9	$42.3,42.5$, 42.10

Lesson	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$			$\mathbf{4 9}$	$\mathbf{5 0}$
Exercise	$43.4,43.8$,	$44.3,44.7$,	$45.1,45.2$,	$46.3,46.6$,	$47.5,47.6$,	$48.2,48.4$,	$49.2,49.4$,	$50.2,50.3$,	$51.2,51.3$,	$52.2,52.5$,
	43.9	44.9	$45.4,45.8$	$46.8,46.9$	47.10	$48.9,48.10$	$49.8,49.9$,	50.9	$51.6,51.10$	$52.8,52.9$

Lesson	53	54	55	56	57	58	59	60	61	62
Exercise	$\begin{aligned} & 53.3,53.5, \\ & 53.6,53.9 \end{aligned}$	$\begin{aligned} & 54.3,54.6, \\ & 54.7,54.9 \end{aligned}$	$\begin{aligned} & 55.2,55.4, \\ & 55.9 \end{aligned}$	56.8	57.3, 57.8	58.3, 58.8	$\begin{aligned} & 59.3,59.6, \\ & 59.8 \end{aligned}$	$\begin{aligned} & 60.3,60.4, \\ & 60.9 \end{aligned}$	$\begin{aligned} & 61.4,61.5, \\ & 61.10 \end{aligned}$	$\begin{aligned} & 62.1,62.4, \\ & 62.5,62.10 \end{aligned}$

Lesson	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$
Exercise	$63.4,63.5$	$64.2,64.5$, 64.8	$65.2,65.3$, $65.5,65.8$	$66.2,66.3$, 66.8	$67.3,67.10$	$68.4,68.6$, 68.9	$69.3,69.5$	$70.4,70.8$

Number and Operations in Base Ten (4.NBT)

Use place value understanding and properties of operations to perform multi-digit arithmetic.
6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Lesson	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
Exercise	21.3	$22.3,22.7$	$23.3,23.8$	$24.7,24.8$	$25.3,25.9$	26.9	27.8	28.9	29.9	$30.7,30.8$

Lesson	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Exercise	31.9	32.10	33.10	34.9	35.9	36.11	37.9	38.9	39.9	40.9

Lesson	$\mathbf{4 2}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$
Exercise	42.10	45.8	$46.8,46.9$	$47.5,47.7$, 47.10	$48.5,48.7$	$49.6,49.8$, 49.10	$50.6,50.9$	51.8	$52.5,52.6$	$53.4,53.5$

Lesson	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$
Exercise	$54.5,54.6$, 54.9	$55.5,55.8$	$56.4,56.8$	$57.5,57.6$, 57.8	$58.6,58.8$	$59.4,59.6$,	$60.4,60.5$,	$61.5,61.8$, $59.7,59.8$	$62.5,62.8$, $62.8,60.9$	$63.5,63.8$, 63.10

Lesson	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$
Exercise	$64.2,64.6$, 64.8	$65.2,65.5$, 65.8	$66.2,66.5$, $66.8,66.9$	$67.4,67.10$	$68.6,68.9$	$69.5,69.8$	$70.7,70.8$

Number and Operations-Fractions (4.NF)

Extend understanding of fraction equivalence and ordering.

1. Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

Lesson	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$
Exercise	16.3	17.2	18.4	19.7	20.8	21.9	22.9	23.8	24.8	25.9

Lesson	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 9}$	$\mathbf{3 1}$	$\mathbf{3 3}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 2}$	$\mathbf{6 8}$	$\mathbf{6 9}$
Exercise	26.9	27.8	29.9	31.10	33.10	$35.2,35.9$	40.9	42.10	68.3	69.2

Lesson	$\mathbf{7 0}$
Exercise	70.3

Number and Operations-Fractions (4.NF)

Extend understanding of fraction equivalence and ordering.
2. Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

This standard is first addressed in Lesson 95.

Number and Operations-Fractions (4.NF)

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
3. Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$.
a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8$; $21 / 8=1+1+1 / 8=8 / 8+8 / 8+1 / 8$.
c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

Lesson	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
Exercise	21.4	22.8	23.5	24.5	25.4	26.8	27.7	28.2	29.3	30.4

Lesson	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$
Exercise	31.1	32.2	33.4	34.3	36.11	37.9	38.9	41.7	42.2	43.3

Lesson	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$	$\mathbf{5 3}$
Exercise	$44.2,44.9$	45.8	46.9	47.4	48.6	$49.3,49.10$	$50.4,50.9$	51.9	52.9	53.9

Lesson	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$
Exercise	$54.2,54.9$	$55.3,55.9$	56.8	57.8	58.8	$59.2,59.8$	$60.2,60.9$	$61.3,61.7$	$62.3,62.7$	$63.2,63.3$

Lesson	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$
Exercise	$64.2,64.5$	$65.2,65.8$	$66.2,66.9$	67.10	68.9	69.8	70.8

Number and Operations-Fractions (4.NF)

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.
4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
a. Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.
b. Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as $6 / 5$. (In general, $n \times(a / b)=$ $(n \times a) / b$.)
c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

Lesson	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$	$\mathbf{7 0}$
Exercise	67.2	$68.3,68.8$	69.7	70.8

Number and Operations-Fractions (4.NF)

Understand decimal notation for fractions, and compare decimal fractions.
5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and 100. For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.

This standard is first addressed in Lesson 78.

Number and Operations-Fractions (4.NF)

Understand decimal notation for fractions, and compare decimal fractions.
6. Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.

Lesson	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$
Exercise	43.9	44.8	45.3	$46.2,46.9$	$47.2,47.10$	48.3	49.7	50.9	51.10	52.9

Lesson	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 5}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$
Exercise	53.9	54.9	55.9	56.8	57.8	58.8	59.8	60.9	61.9	62.10

Lesson	$\mathbf{6 3}$	$\mathbf{6 6}$	$\mathbf{6 8}$	$\mathbf{7 0}$
Exercise	63.10	66.9	68.9	70.8

Number and Operations-Fractions (4.NF)

Understand decimal notation for fractions, and compare decimal fractions.
7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.

This standard is first addressed in Lesson 110 and in Blocks 2, 3, and 4 of the Student Practice Software.

Measurement and Data (4.MD)

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

1. Know relative sizes of measurement units within one system of units including $\mathrm{km}, \mathrm{m}, \mathrm{cm}$; $\mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz} . ; \mathrm{l}, \mathrm{ml}$; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...

Lesson	$\mathbf{5 9}$	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$
Exercise	59.6	60.4	61.5	62.5	63.5	64.8	65.5	66.8	67.10

Measurement and Data (4.MD)

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

Lesson	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$
Exercise	12.8	$13.4,13.9$	14.8	15.3	16.9	17.7	18.7	19.9	20.9	21.10

Lesson	$\mathbf{2 2}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$
Exercise	22.9	24.8	25.9	26.7	27.8	$28.6,28.9$	29.5	30.6	31.8	32.5

Lesson	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$			$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$
Exercise	33.7	34.7	35.7	36.6	37.8	38.6	39.7	40.5	41.6	42.7

Lesson	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}$	$\mathbf{4 7}$	$\mathbf{4 8}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{5 1}$	$\mathbf{5 2}$
Exercise	43.9	44.9	45.8	46.8	$47.5,47.10$	48.5	$49.8,49.10$	50.9	51.10	52.9

Lesson	$\mathbf{5 3}$	$\mathbf{5 4}$	$\mathbf{5 6}$	$\mathbf{5 7}$	$\mathbf{5 8}$	$\mathbf{5 9}$	$\mathbf{6 0}$	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$
Exercise	$53.5,53.9$	$54.6,54.9$	56.7	57.8	58.7	$59.6,59.8$	$60.4,60.6$	$61.5,61.10$	$62.5,62.10$	$63.5,63.10$

Lesson	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{7 0}$
Exercise	64.8	65.5	$66.5,66.8$	$67.4,67.10$	$68.6,68.9$	70.8

Measurement and Data (4.MD)

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.

Lesson	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
Exercise	5.6	6.8	7.6	$8.2,8.5$	$9.5,9.10$	10.9	11.5	12.11	13.6	14.5

Lesson	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 4}$
Exercise	15.7	16.6	17.8	18.8	20.10	21.10	22.9	23.8	24.8	27.8

Lesson	$\mathbf{2 9}$	$\mathbf{3 1}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 7}$	$\mathbf{3 9}$	$\mathbf{4 0}$	$\mathbf{4 1}$	$\mathbf{4 4}$	$\mathbf{4 8}$
Exercise	29.9	31.10	33.10	34.9	37.9	39.9	40.9	41.9	44.9	48.10

Lesson	$\mathbf{5 3}$	$\mathbf{5 5}$	$\mathbf{5 8}$	$\mathbf{6 0}$	$\mathbf{6 2}$	$\mathbf{6 7}$
Exercise	53.9	55.9	58.8	60.4	62.10	67.1

Measurement and Data (4.MD)

Represent and interpret data.
4. Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

This standard is first addressed in Lesson 129.

Measurement and Data (4.MD)

Geometric measurement: understand concepts of angle and measure angles.
5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:
a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.
b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees.

Lesson	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{6 9}$
Exercise	61.3	62.2	$63.6,63.9$	$64.3,64.5$	$65.6,65.8$	$66.6,66.9$	67.6	68.2	$69.6,69.8$

Measurement and Data (4.MD)

Geometric measurement: understand concepts of angle and measure angles.
6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.

This standard is first addressed in Lesson 121.

Measurement and Data (4.MD)

Geometric measurement: understand concepts of angle and measure angles.
7. Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

Lesson	$\mathbf{6 9}$	70
Exercise	69.6	70.5

Geometry (4.G)

Draw and identify lines and angles, and classify shapes by properties of their lines and angles.

1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

This standard is first addressed in Lesson 95.

Geometry (4.G)

Draw and identify lines and angles, and classify shapes by properties of their lines and angles.
2. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.

This standard is first addressed in Lesson 108.

Geometry (4.G)

Draw and identify lines and angles, and classify shapes by properties of their lines and angles.
3. Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

This standard is addressed in the following activities of the Student Practice Software:

- Block 3 Activity 2
- Block 4 Activity 2
- Block 5 Activity 3

