Comprehensive School Reform and Achievement: A Meta-Analysis
Geoffrey D. Borman, Gina M. Hewes, Laura T. Overman and Shelly Brown
REVIEW OF EDUCATIONAL RESEARCH 2003; 73; 125
DOI: 10.3102/00346543073002125

The online version of this article can be found at:
http://rer.sagepub.com/cgi/content/abstract/73/2/125

Published on behalf of

American Educational Research Association

By

SAGE

Additional services and information for Review of Educational Research can be found at:

Email Alerts: http://rer.aera.net/cgi/alerts
Subscriptions: http://rer.aera.net/subscriptions
Reprints: http://www.aera.net/reprints
Permissions: http://www.aera.net/permissions
Comprehensive School Reform and Achievement: A Meta-Analysis

Geoffrey D. Borman
University of Wisconsin, Madison
Gina M. Hewes and Laura T. Overman
Johns Hopkins University
Shelly Brown
University of North Carolina, Greensboro

This meta-analysis reviews research on the achievement effects of comprehensive school reform (CSR) and summarizes the specific effects of 29 widely implemented models. There are limitations on the overall quantity and quality of the research base, but the overall effects of CSR appear promising. The combined quantity, quality, and statistical significance of evidence from three models, in particular, set them apart. Whether evaluations are conducted by developers or by third-party evaluators and whether evaluators use one-group pre-post designs or control groups are important factors for understanding differences in CSR effects. Schools that implemented CSR models for 5 years or more showed particularly strong effects, and the benefits were consistent across schools of varying poverty levels. A long-term commitment to research-proven educational reform is needed to establish a strong marketplace of scientifically based CSR models.

KEYWORDS: achievement, educational policy, meta-analysis, school reform.

The latter half of the 20th century was marked by recurring efforts at school reform and improvement in the United States. Yet, as Slavin (1989) observed, this cycle of reforms—like a pendulum swing—has continued to move from one fad to another with little evidence of national progress. As each new reform is widely disseminated and implemented, the research follows closely behind, sometimes weighing in on an issue only after schools have moved on to the next apparent innovation. Recent national reform and policy movements, however, may halt this frustrating cycle. Indeed, for the first time Congress and other educational policymakers are making some funding sources available only to schools that implement educational reforms with high-quality evidence of effectiveness. Most notably, the Comprehensive School Reform Program (CSRP)—formerly known as the Comprehensive School Reform Demonstration (CSRD) program—provides grants to schools to adopt proven comprehensive reforms. With the recent proliferation of externally developed comprehensive school reform (CSR) models, the simultaneous growth in the CSR research base, and the significant public and private financial backing that
this reform movement has received, the potential for generating a national wave of research-based educational innovation has never been greater.

In addition to their focus on research-based solutions for school improvement, current CSR initiatives help to reconcile the two most important recent educational reform movements in the United States. Since the 1980s, competing and often contradictory reforms have combined top-down, centralized efforts to improve schools and teaching with efforts at decentralization and school-based management (Rowan, 1990). The general spirit of today’s reform efforts continues to articulate top-down standards, which dictate many of the changes in the content of schooling, but fundamentally leaves the process of school change up to the discretion of local educators. The problem is that the complex educational changes demanded by current standards-based reform initiatives, combined with an increasingly heterogeneous student population largely composed of students whom schools traditionally have failed, have pushed the technology of schooling to unprecedented levels of complexity. In many ways, expecting local educators to reinvent the process of educational reform, school by school, is both unrealistic and unfair. Externally developed CSR models provide a type of top-down direction for designing and supporting the process of school reform. In this case, however, the top-down direction is not in the form of distant legislative mandates but offers, in theory, tangible and accessible support for school change rooted in research and literally packaged and delivered to each school.

In this exhaustive meta-analysis, we review all known research on the achievement effects of the most widely implemented, externally developed school improvement programs known as “whole-school” or “comprehensive” reforms. In addition to reviewing the achievement effects of CSR as a general strategy, we synthesize research on the specific effects of the 29 most widely implemented CSR models. In quantifying the overall and specific effects of CSR models, we also assess how the methodological and contextual factors associated with the studies of CSR differ. In addition, we identify common components across reforms, such as whether a model specifies and includes a particular curriculum, or whether it specifies and provides a plan for the continuing professional development of teachers. Using these methodological, contextual, and programmatic factors as predictors of effect size, we assess how they may influence the estimates of the models’ effects. The resulting information allows us to examine

- The general effectiveness of the CSR strategy;
- The effects associated with specific CSR model components;
- The effects of each of the 29 CSR models; and
- The extent to which differences in the methodological and contextual features of the studies mediate the estimates of effects.

What Is CSR?

The “scale up” of CSR designs is happening at an unprecedented rate, as evidenced by the growing number of externally developed school reform designs (e.g., Accelerated Schools, Core Knowledge, High Schools That Work, Success for All) that are being implemented in thousands of schools, serving millions of students throughout the United States. CSR focuses on reorganizing and revitalizing entire schools rather than on implementing a number of specialized, and poten-
tially uncoordinated, school improvement initiatives. In general, the funding sources supporting the implementation of CSR have been targeted at the schools most in need of reform and improvement: high-poverty schools with low student test scores. According to recent data from the Southwest Educational Development Laboratory, schools receiving money to implement CSR models through the CSRP have an average poverty rate of 70%. Furthermore, nearly 40% of schools receiving CSRP funds were identified for school improvement under Title I regulations and more than 25% were identified as low-performing schools by state or local policies.2

The other significant funding source for CSR programs has been Title I of the Elementary and Secondary Education Act of 1965, which also aims to expand and improve educational opportunities in the nation’s high-poverty schools. In January 2002, with the reauthorization of Title I as the No Child Left Behind Act, the CSRP and Title I came together under the same legislation. As Title I, Part F, CSRP has become a significant component of the growing federal movement to support scientifically based efforts to reform low-performing high-poverty schools across the nation.

The U.S. Department of Education (2002) defines CSR on the basis of 11 components that, when coherently implemented, represent a “comprehensive” and “scientifically based” approach to school reform. Specifically, a CSR program

1. Employs proven methods for student learning, teaching, and school management that are founded on scientifically based research and effective practices and have been replicated successfully in schools;
2. Integrates instruction, assessment, classroom management, professional development, parental involvement, and school management;
3. Provides high-quality and continuous teacher and staff professional development and training;
4. Includes measurable goals for student academic achievement and establishes benchmarks for meeting those goals;
5. Is supported by teachers, principals, administrators, and other staff throughout the school;
6. Provides support for teachers, principals, administrators, and other school staff by creating shared leadership and a broad base of responsibility for reform efforts;
7. Provides for the meaningful involvement of parents and the local community in planning, implementing, and evaluating school improvement activities;
8. Uses high-quality external technical support and assistance from an entity that has experience and expertise in schoolwide reform and improvement, which may include an institution of higher education;
9. Includes a plan for the annual evaluation of the implementation of the school reforms and the student results achieved;
10. Identifies the available federal, state, local, and private financial and other resources that schools can use to coordinate services that support and sustain the school reform effort; and
11. Meets one of the following requirements: Either the program has been found, through scientifically based research, to significantly improve the academic achievement of participating students; or strong evidence has shown that the program will significantly improve the academic achievement of participating children.
Some schools develop their own “home-grown” reform models having these characteristics. As suggested by the eighth component of CSR, however, many educators are turning to groups external to the schools, such as universities and educational centers and labs, for assistance in designing whole-school reform models.

Externally developed reform designs are consistent in that they provide a model for whole-school change and attempt to help schools address many, if not all, of the 11 components mentioned previously. At the same time, however, the externally developed designs are remarkably diverse in their analyses of specific problems in U.S. education, the solutions that they propose, and the processes through which they propose that schools may achieve those solutions. For example, the Comer School Development Program builds largely around Dr. James Comer’s work in community psychiatry and focuses its energy on creating schools that address a wide range of students’ health, social, emotional, and academic challenges. By contrast, the Core Knowledge reform program (Hirsch, 1995, 1996) derives from the developer’s experiences as a professor of English and education and focuses almost entirely on the establishment of a “common core” of knowledge for all children in various subject areas, including literature, history, science, mathematics, and the arts. The Coalition of Essential Schools model attempts to create more educationally rich and supportive learning environments through a common adherence to nine broadly philosophical principles (Sizer, 1992), whereas Success for All (Slavin & Madden, 2001) specifies a particular K–6 reading curriculum, a particular professional development sequence, and other schoolwide components.

CSR is expanding rapidly because many models have established development and dissemination infrastructures for replicating and supporting implementations across numerous schools. In other words, the developers can transport their CSR models to schools across the United States, help local educators understand the tenets of the reform, and teach them how to implement the school organization and classroom instruction that the model suggests. In every case, the developers provide some type of initial training or orientation to help educators to understand at least the underlying philosophy of the model. In many circumstances, however, replication also involves a more specific blueprint for implementing and sustaining the model. Highly specified models, for instance, often prescribe new curricular materials, new methods of instruction, alternative staffing configurations, and a series of ongoing professional development activities.

The Policy Context for CSR

In addition to the replicable nature of many of the models, expansion of CSR has been fueled by a series of recent national developments: the movement toward systemic and standards-based reform; the establishment of the New American Schools Development Corporation; new federal legislation allowing the use of Title I funds—the primary source of federal assistance to at-risk students from high-poverty schools since 1965—to support schoolwide educational programs in high-poverty schools; and the federal CSRP legislation that provides hundreds of millions of dollars to support the costs of adopting externally developed reform models. Only since the mid-1990s has the idea of schoolwide reform emerged as a prominent strategy for helping to improve the outcomes of at-risk students from high-poverty schools. Before then,
the school-based services funded through Title I, and other categorical programs for at-risk students, targeted only the students with the lowest test scores. As a result, the vast majority of schools used the funds to develop specialized pullout programs that provided remedial services to the subgroups of students with the greatest academic needs (Borman, Wong, Hedges, & D’Agostino, 2001).

Instead of the seemingly piecemeal and uncoordinated categorical targeted assistance programs that had served Title I schools since the mid-1960s, a growing belief developed that at-risk students and high-poverty schools could be better served by schoolwide reforms. This belief was encouraged by informed opinion (e.g., Rotberg, Harvey, & Warner, 1993), by general findings from the effective schools research tradition (Edmonds, 1979; Teddlie & Reynolds, 2000), and by the concept of systemic reform (e.g., Smith & O’Day, 1991), more than by specific groundbreaking empirical studies. Inspired by the emerging vision of standards-based reform, the 1994 reauthorization of Title I called on states to raise academic standards, to build the capacity of teachers and schools, to develop challenging new assessments, to ensure school and district accountability, to ensure the inclusion of all children, and to develop coordinated systemic reforms. The new legislation encouraged schoolwide initiatives, rather than targeted programs, for all schools where at least 50% of the students were poor. These sweeping changes began the transformation of Title I from a supplemental remedial program to the key driver of the standards-based schoolwide reform movement (Borman, 2000a).

During the 1990s, Title I schoolwide projects proliferated across the country. In 1991, only 10% of the eligible Title I schools operated schoolwide programs, but by 1996, approximately 50% of the eligible Title I schools had implemented them (Wong & Meyer, 1998). Rather than implementing the characteristic Title I pullout programs, educators were granted the flexibility to invent and implement their own reforms designed to upgrade the whole school. A number of studies from the 1990s showed that, in the short term, these schoolwide efforts did not produce compelling evidence of positive achievement effects and, for the most part, did not result in the desired reforms (Wong & Meyer, 1998, 2001). Also during the 1990s, a more general review indicated that site-based management reforms failed to affect student outcomes positively, in large part because the schools failed to develop coherent statements of beliefs or models for guiding the work and decision-making (Murphy & Beck, 1995). These outcomes, combined with new evidence from the congressionally mandated Prospects study of the modest overall effects of Title I services (Borman, D’Agostino, Wong, & Hedges, 1998; Puma et al., 1997), suggested that federal policies for improving education for at-risk students from high-poverty schools were in need of further retooling.

At the same time, the growing research base on several externally developed school restructuring efforts, such as the Comer School Development Program (Comer, 1988; Haynes, Emmons, & Woodruff, 1998) and Success for All (Slavin et al., 1996; Slavin & Madden, 2001), seemed to indicate hope for a high-quality education for at-risk students. In addition, the companion study to the national Prospects evaluation of Title I, the Special Strategies Study (Stringfield et al., 1997), indicated that whole-school, externally developed programs funded by Title I appeared more likely to have positive effects on academic achievement than either traditional Title I pullout programs or locally developed reforms.
Along with the growing policy and research support, in 1991 then-president George Bush announced the creation of a private-sector organization called the New American Schools Development Corporation (NAS), which was intended to support the creation of “break-the-mold” whole-school restructuring models for the next century (Kearns & Anderson, 1996). Using a business model, NAS turned to the marketplace for proposals for new models of American schools that would enable all students to achieve world-class standards in core academic subjects, enable schools to operate at costs comparable to current costs after start-up funding, and address all aspects of a school’s operation. After receiving nearly 700 proposals in February 1992, NAS chose 11 and provided funds for a 3-year program of development and testing. Since 1995, NAS has continued to focus on “scaling up” seven of the models to thousands of schools nationwide. Providing more than $150 million over the past decade in financial and technical assistance to the reform developers, NAS has helped create a market for CSR and has helped scale up the CSR movement.

In response to the promise of the externally developed programs disseminated by NAS and by other independent model developers, the U.S. Congress also has encouraged individual schools to implement “scientifically based” whole-school reforms and to seek the assistance of external groups in developing their school reform plans. In 1998, Congress initiated the CSRP, which encourages schools to develop comprehensive plans for implementing research-based strategies for school reform. Through a competitive process, CSRP awards a minimum of $50,000 per year for 3 years to qualifying schools. Since first authorizing CSRP in fiscal year 1998 and allocating a total of $145 million, Congress has steadily increased its support. In fiscal year 2002, allocations for CSRP equaled $310 million. This figure includes $235 million set aside specifically for Title I schools and $75 million available to any schools wishing to apply through the Fund for the Improvement of Education. This initiative, combined with Title I’s continuing focus on schoolwide change and the efforts of NAS and other independent developers, has led to the continuing expansion of externally developed CSR models.

Previous Reviews of CSR

To date, there have been five major practitioner-oriented reviews, or “catalogs,” of CSR models (see Herman et al., 1999; Northwest Regional Educational Laboratory, 1998, 2000; Slavin & Fashola, 1998; Traub, 1999; Wang, Haertel, & Walberg, 1997). Because of the rapid expansion of the CSR movement and the CSR research base, however, these reviews are quickly becoming outdated. Although the reviews—most notably those by Herman et al. and Slavin and Fashola—have provided some appraisals of the effects of the various CSR models, none has offered a comprehensive, quantitative synthesis of the overall effects of CSR or of the effects of the various CSR models. Rather, as Stringfield (2000) suggested, these publications are akin to Consumer Reports guides for education, offering information that is important for educators to consider when “shopping” for a reform model. The reviews typically contain summaries of the general attributes of the CSR models, appraisals of the level of support that is provided by the developers, the costs associated with implementing the models, and various ratings of the strengths of the research supporting each CSR design.
In addition to these reviews of CSR models, there have been several recent articles critiquing the research supporting particular designs and CSR in general. Most notably, the critiques have suggested that some CSR research may be tainted because the developers are often also the evaluators (Pogrow, 2000; Walberg & Greenberg, 1999). Another source of controversy involves whether the use of a quasi-experimental, untreated-control-group design is really preferable to an analysis of pretest-to-posttest gain scores across a large number of sites (Pogrow, 1998; Slavin, 1999). In attempting to judge whether an educational intervention has produced “exemplary” effects on achievement, the debate has, in a sense, pitted the greater reliability of a large number of gain-score analyses against the greater internal validity of a relatively small number of matched control-group designs. Despite the controversy, no empirical data from CSR evaluations have been systematically brought to bear on either question.

Beyond these methodological considerations, studies and reviews of CSR and the process of school change have identified several common, substantive factors that have a bearing on the success or failure of externally developed reforms. First is the rather straightforward observation that the quality of the CSR model implementation matters. A number of researchers have demonstrated a strong relationship between reform implementation and positive effects—both qualitative and quantitative—across a variety of reforms (e.g., Berman & McLaughlin, 1978; Crandall et al., 1982; Datnow, Borman, & Stringfield, 2000; Stringfield et al., 1997).

Second, although some reform models have been criticized because their prescriptive designs may suppress teacher creativity and require an inordinate amount of preparation time (Datnow & Castellano, 2000), externally developed reforms that are more clearly defined tend to be implemented with greater fidelity and, in turn, tend to have stronger effects on teaching and learning than do reforms that are less clearly defined (Bodilly, 1996, 1998; Nunnery, 1998). Third, well-implemented reforms tend to have strong professional development and training components and effective follow-up to address teachers’ specific problems in implementing change within their classrooms (Muncey & McQuillan, 1996; Nunnery, 1998). Finally, for external models of school change to make an important impact within schools, teachers and administrators must support, “buy into,” or even help “co-construct” the reform design (Borman et al., 2000; Datnow & Stringfield, 2000). Although there have been no systematic analyses across a wide range of CSR models, it would seem that models with clear components addressing each of these issues would tend to result in more reliable implementations and stronger effects than CSR models without such components.

Further, the federal government has detailed 11 clear characteristics, outlined earlier, of what it views as a truly comprehensive approach to reform. Not surprisingly, some of these overlap with the components identified in the CSR and school-change research literature, including high-quality technical support from the external CSR partner, continuous teacher and staff development and training, and staff support or “buy in” for the reform initiative. The federal recommendations, however, cite several other characteristics that may be associated with effective CSR models, such as evidence that the reform has been replicated successfully, measurable goals for student performance and benchmarks for meeting the goals, and the involvement of parents and the community in the governance of the school and the development of the school improvement plan.
Objectives and Hypotheses

The results from studies of CSR differ in many ways, including (a) who reported the findings (i.e., the developer or someone else); (b) the methods used (e.g., pretest-posttest comparison, experimental comparison, or nonequivalent control-group design); (c) the student and school context (e.g., high-poverty versus lower-poverty settings); (d) actual characteristics of the CSR models (e.g., the costs associated with a model, or the level of support for implementation provided by the developer); and (e) indicators of the model’s effectiveness (e.g., test scores in reading, math, science, or some other subject). Differences across studies such as these are commonly found in the social sciences, especially in the case of education.

Indeed, given the programmatic, methodological, and contextual diversity of the CSR literature, questions emerge concerning how, or whether, we should proceed with a synthesis of its findings. As Borman (2000b) pointed out, there are varying perspectives on what the reviewer should do when confronted by such a variegated literature, in terms of overall research quality and other features, such as the research designs, samples, and the actual circumstances involved. On one hand, Glass (1976) stated, “It is an empirical question whether relatively poorly designed studies give results significantly at variance with those of the best-designed studies” (p. 4). On the other hand, Slavin (1986) argued, “Far more information is extracted from a large literature by clearly describing the best evidence on a topic than by using limited journal space to describe statistical analyses of the entire methodologically and substantively diverse literature” (p. 7). Should the researcher combine studies that used varying methods and are characterized by varying substantive characteristics, or should one focus only on the “best evidence?”

We believe that there are two important reasons to begin our analysis with a review of the complete CSR literature. First, as Glass (1976) suggested, by empirically examining a diverse range of studies, we may assess how and to what extent methodologic differences across the studies are associated with differences in CSR effects. When outcomes are robust across studies of varying methodologies, one can be more confident in the conclusions. On the other hand, if studies differ in terms of both rigor and results, then one may focus on the subset of more rigorous studies when formulating conclusions. This analysis of the consequences of methodological variations for the estimation of CSR effects, which is unique to the enterprise of meta-analysis, allows methodologists and consumers of the research literature to recognize the biases in the literature and to understand empirically both their frequency and magnitude.

Second, from a practical perspective, relatively little is known about what common components characterize effective CSR models. Well-intended federal policies have outlined the elements that should constitute a school reform that is truly comprehensive. These policies, however, have not benefited greatly from the cumulative knowledge of the CSR research base. By examining how effects vary across models and contexts, it is our hope to provide new evidence of both how and where CSR may make the biggest difference in achievement. Our inquiry also may suggest some components or specific models that do not appear to be affecting student outcomes in meaningful ways.

Our meta-analysis begins by assessing the methodological, programmatic, and contextual variations across an extensive collection of all known studies of 29 of the most widely discussed and disseminated CSR models. This preliminary analy-
sis shows how and to what extent the methodological, programmatic, and contextual factors shape our understanding of the overall achievement effects of CSR. Specifically, the preliminary analysis empirically identifies and quantifies the potential methodological biases in the literature, reveals the common characteristics of CSR programs that make a difference in terms of achievement, explores differences in achievement effects associated with varying contexts (e.g., the grade level or the subject area targeted by the reform), and, in general, characterizes the overall quality of the research evidence.

After characterizing the overall CSR research base, and after empirically identifying its potential methodological biases, our second objective is to assess the efficacy of each of the 29 CSR models. Rather than surveying the overall CSR research base and the methodological, programmatic, and contextual factors within it, this phase of our research develops standards for assessing the quality, quantity, and statistical significance of the models’ effects on achievement. In short, we establish the extent to which each of the 29 models is supported by scientifically based research. We address this concern by focusing on only the subgroup of studies that provides the best evidence for evaluating the effectiveness of each of the 29 CSR models. To determine which studies provide the best evidence, we do not apply a priori judgments or other potentially subjective criteria; rather, we use our empirical analyses of the CSR literature’s methodological biases.

Obviously, our hypotheses concerning the evaluation results require attention to a range of moderating influences that are model-specific, methodological, and contextual in nature. Model-specific influences include those that we identified in our literature review: how tightly prescribed the reform design is, especially as it relates to curriculum and instruction; the extent to which the developer provides ongoing technical support and professional development to address teachers’ specific problems in implementing the reform; and the ways in which developers secure teacher support for the reform. They also include various focuses suggested by the 11 components identified in the federal definition of CSR. These include having measurable goals for student performance and benchmarks for meeting those goals, incorporating a strong parent-governance component, and providing evidence of successful replication of the model. Although relatively little quantitative research has linked these model-specific influences to achievement, we hypothesized that CSR models having specific components designed to address the areas identified in our literature review and the 11 federal characteristics of CSR would tend to be better implemented and more comprehensive reforms than CSR models without such components. In turn, we expected the better-implemented and more comprehensive models to yield the strongest effects on achievement.

The two primary methodological characteristics that we identified are related to who does the research and the general strength, or internal validity, of the study design that the researcher chooses. We hypothesized that evaluations performed by the CSR developer would yield higher estimates of effects than evaluations done by others. In addition, we predicted that studies employing experimental or quasi-experimental treatment-control comparisons would yield lower effect estimates than studies based on analyses of CSR pre-post gain scores. Although imperfectly matched comparison groups could cause positive biases, it is more likely that effect estimates based on simple one-group pre-post designs will yield greater positive biases. Cook and Campbell (1979) note that threats to internal validity, including...
history, maturation, and regression-to-the-mean effects, are likely to make one-
group pre-post designs among the weakest. Also, empirical results from a meta-
analysis of Title I program effects by Borman and D’Agostino (1996) illustrated
that analyses of pre-post gains resulted in positive biases, relative to studies employ-
ing quasi-experimental control group comparisons, of approximately one fifth of
one standard deviation.

The contextual factors affecting CSR effects are largely unexplored and are,
therefore, less predictable. Our analyses of the relative effects of CSR in reading,
math, and other subjects, across various grade levels and across varying poverty
levels, are unprecedented. Given the targeting of recent policies, most notably the
CSRP program, on scaling up reform in high-poverty contexts, we hoped to find
particular benefits for these schools.

Method

Selection of Comprehensive School Reform Models

The goal of our analysis was to synthesize the research on widely disseminated,
externally developed CSR, or whole-school reform, models. To be considered for
the current study, therefore, a reform model needed to be (a) a whole-school or
schoolwide reform design; (b) the subject of at least one prior study, whether pos-
tive or negative, on which we could base our review; (c) disseminated by devel-
opers external to the schools; and (d) replicated in 10 or more schools. Previous
reviews and catalogs of reform models, including the fall 2000 edition of the
Northwest Regional Educational Laboratory’s (NWREL) Catalog of School
Reform Models (NWREL, 2000) and An Educator’s Guide to Schoolwide Reform
published by the American Institutes of Research (AIR) (Herman et al., 1999),
used similar selection criteria. At the time of our selection, these publications were
the only known sources of information available to define the universe of CSR
models meeting our criteria.

Therefore, our selection of models drew directly from the previous NWREL
and AIR catalogs. Through those sources, we identified 33 CSR models, but only
29 of the models provided at least one report of their achievement effects from
which we could calculate effect size estimates. The 33 models originally selected
for the present research were implemented in 55.6% of the schools that received
CSRP funds for externally developed models, as reported in the SEDL database,
and the 29 models ultimately included in this review represented 53.4% of the
CSRP implementations. The results of this review should generalize reasonably
well to the population of schools implementing CSR models using CSRP and Title I
program funds. The review, however, clearly does not represent schools that use
these funds to implement “home-grown,” nonexternally developed CSR designs,
or schools that package one or more externally developed, targeted, nonschoolwide
interventions to develop their own CSR approaches. Finally, because we cannot
review the research for CSR models that have no research base, those models are
not represented in this synthesis, either.

Summary descriptions of each school reform model are presented in Table 1, and
further descriptive information about the main features and costs of each model is
presented in the appendix. The descriptive information in the appendix is adapted
from the NWREL’s Catalog of School Reform Models and is supplemented with a
narrative description of each reform’s research base.
Literature Search Methods

We used several approaches to conduct broad searches of the literature on comprehensive school reform and its effects on achievement. The preliminary literature review involved computerized searches of the Education Resources Information Center (ERIC) database (1966–2001) and the PsychLit database. We also conducted general World Wide Web searches (using search engines such as Google) and specific searches of CSR developers’ Web pages for references to research or any other published or unpublished studies or compilations of data. We also collected all studies referenced in the Herman et al. (1999) and NWREL (1998) reports.

After completing this initial review stage, we compiled separate lists of the references gathered for each of the 33 reform models. We then sent the lists to each of the developers for review and feedback. All 33 developers responded, to confirm that our list included all the references known to them, to make suggestions for further references, or to provide studies that we were unable to obtain through other sources. The final phase of review involved exhaustive bibliographic reference chasing based on all reports obtained through the computerized databases, from the Web, and from developers. After performing this series of search methods, we found no other available evaluations of comprehensive school reform and achievement outcomes.

The period of aggressive collection of studies began in fall 2000 and concluded at the end of that calendar year. After 2001 began, we no longer conducted an extensive literature search; we did, however, continue to contact reform developers as necessary and followed up with locating articles discovered in the previous round of literature searches and the review of references in articles as they arrived at our facility. Thus, the review includes studies completed through late 2001.

Inclusion Criteria

Liberal inclusion criteria were applied in the preliminary stages of the literature search. We reviewed all study abstracts provided by the database searches and all evaluations of comprehensive school reform and achievement that were referenced in the documents to ascertain whether any report of achievement data, in the form of test scores, was provided by the studies. If an abstract or study did not suggest that such data were reported, the study was excluded from further consideration. We read more than 800 studies, abstracts, and summaries during the preliminary stage of the review process. The vast majority of these studies, however, were not considered beyond that stage, as they typically documented implementation outcomes or the theories supporting the reform model but provided no assessment of the model’s achievement effects.

In the second stage, we focused on the subset of studies that provided some form of assessment of the model’s effects on test scores. From these studies, we chose those that allowed us to generalize to the effects of externally developed whole-school reform models implemented in the United States. In other words, the studies that we selected had to help us to answer the question, What would be the expected achievement effects of the reform model if a school or school district in the United States chose to contact the developer and arrange to implement the program as a schoolwide intervention? More specifically, we deemed studies eligible for further consideration if they met all of the following criteria:
• Sufficient achievement data for reform participants, and, when applicable, comparison groups, were provided, from which effect sizes could be computed.
• The study design involved some form of comparison from which an effect could be determined: It was either a one-group pre-post design involving CSR schools only or a quasi-experimental or experimental treatment-control comparison.
• The sample or data provided were not duplicated in another study accepted for inclusion.
• The sample used in the evaluation was composed of students from a school in the United States.
• The sample of students was from the school’s regular education program.

Many of the studies that we reviewed did not meet these eligibility requirements. The reason was usually insufficient information for calculating effect sizes. The most common reason for excluding studies was failure to provide a standard deviation or information about the testing instrument from which a standard deviation could be imputed (imputation of data is discussed below in more detail). A substantial number of studies included samples or data that were reported in other studies accepted for inclusion, so they were eliminated. Many other studies used a non-U.S. sample or a special population, such as special education students.

In the end, 232 studies met all requirements and were selected for analysis.4

Moderator Variables

In addition to collecting the information necessary for calculating effect sizes and weights (e.g., achievement outcomes, standard deviations of the achievement outcomes, and the sample sizes), we coded a number of other characteristics that corresponded to two general areas: contextual information related to the particular implementation that was evaluated, and methodological variables related to the study design. Because studies often reported multiple outcomes from multiple contexts or multiple research designs, the contextual and methodological characteristics were coded at the level of the outcome rather than at the level of the study.

Contextual Variables

Contextual variables helped us to examine potential differences in effect size related to the context in which the CSR model was evaluated. The contextual variables included

• Subject area tested;
• Grade level evaluated;
• Years of CSR model implementation for the results given; and
• Poverty level of the school served by the CSR model.5

We identified five major categories based on subject areas that were tested and evaluated in the CSR literature: language arts, math, science, social studies, and general. These were developed from a wider array of subject areas noted in the studies. Language arts included reading and other literacy-related subcategories such as comprehension, vocabulary, spelling, language, word knowledge, and writing. Math covered computation, arithmetic, and math applications. Science included both science and health. Social studies included all social sciences and history. General typically

Borman et al.
consisted of composite scores across subjects or general ability measures. These mutually exclusive categories were coded into five indicator variables.

The grade level tested was a dichotomous variable, where zero represented elementary school grades (K–5), and 1 represented all other grades (i.e., Grades 6–12 and mixed across levels). If a study listed a range of grades associated with an achievement outcome such that grade levels were mixed across the elementary–middle school break, that outcome was assigned to 1, the middle/high/mixed grades category. For example, if a study provided outcome data for students in Grades 4–6, the outcome was assigned 1 on the grade-level variable.

A smaller subgroup of studies identified the number of years that the CSR model had been implemented at the school and indicated the poverty level of the school. In all cases, we indexed poverty level by the percentage of students at the CSR school who were eligible for the free lunch program. The number of years that the CSR model had been implemented at the school site ranged from 1 school year to 14 school years, with an average of 2.96 years.

Methodological Variables

The methodological variables describing the evaluations included the following:

- Type of effect data provided (i.e., correlational, categorical, or mean difference);
- Type of research design (i.e., randomized experiment, quasi-experimental matched school design, quasi-experimental covariate-adjusted design, quasi-experimental match to a “similar” school, quasi-experimental comparison to state or district outcomes, or one-group pre-post design);
- Whether the study used a longitudinal design; and
- Whether the study was conducted by the reform developer.

Each of these methodological characteristics was represented by an indicator code (0, 1) in our analyses. For type of effect data, we coded an outcome as one that provided correlational effect data when it showed a simple correlation between participation in the reform model and achievement. Categorical effect data included outcomes that provided a binary achievement result, such as pass/fail or met standard/did not meet standard. The final type of effect data came from mean treatment-control achievement differences or pre-post differences for the treatment group.

We coded six types of research design, each using one of the following approaches: (a) true random assignment of schools or students to the CSR and control conditions; (b) a quasi-experimental design that included explicit matching of the CSR school (or students) with a comparison school (or students) based on prior achievement levels and student demographics; (c) a covariate-adjusted comparison between the CSR school (or students) and the non-CSR school (or students) based on prior achievement levels and, occasionally, student demographics; (d) a comparison of the CSR school (or students) to a non-CSR school (or students) stated to be “similar” on the basis of unspecified criteria; (e) a simple comparison of the CSR school (or students) with all other schools (or students) in the district or state; and (f) a one-group design examining pre-post changes in the CSR school’s (or students’) achievement outcomes. For our main analyses, we contrasted the one-group pre-post analyses with all of the other designs, which used some form of comparison group.
Third, we coded an indicator variable as 1 for studies that used a true longitudinal design, which tracked the achievement outcomes for the same group of students over time. True longitudinal designs included all outcomes for which there were two or more time points, including simply a pretest and posttest, for the same sample of students at each time point. All other outcomes—including those that contrasted the results for one grade cohort of students in a given year with the results for the same grade cohort in a subsequent year and those that included a simple cross-sectional, posttest-only comparison—were coded as zero. Our original coding scheme provided more detail on the research design, including several distinct types of cohort studies. In analyses not shown, however, all of the nonlongitudinal comparisons were found to yield similar effects or to be simply too few in number to stand alone. Consequently, all research involving nonlongitudinal designs was pooled and contrasted with true longitudinal designs.

The final methodological characteristic that we coded was comparison of evaluations by the CSR developer with evaluations performed by others. Studies that included among their authors the name of any of the CSR model’s original developers were coded as 1, and all other studies were coded as zero.

Reform Attributes

Separately from the data entry and coding for the studies, the 29 CSR models were coded by two or three independent coders to indicate whether they required each of the following reform attributes:

• A set of specific curricular materials;
• Replicable pedagogical practices;
• A faculty vote with at least 75% approval before the reform could be adopted;
• A specific and replicable component designed to engage parents and the community in the governance of the school and the planning and implementation of the school improvement process;
• A set of replicable student performance assessment methods and benchmarks that schools may use to track students’ progress; and
• Ongoing teacher and staff professional development and training.

In addition, for each of the 29 reforms, we documented the number of schools in which the reform had been replicated, the level of technical support that the developer provided to schools, and the estimated full marginal cost for the 1st year of implementation. These factors brought the number of reform attributes under consideration to nine.

The information for coding the nine reform attributes came from the Herman et al. (1999) report, the NWREL (1998) catalog, the developers’ websites, documents from the developers, and in some cases, direct contact with the developers. The coding relied on interrater agreement among two or three coders, who independently coded the six attributes in the bulleted list above. Where the coders did not agree, they attempted to reach consensus by discussing the reasons for the selected response. If this process did not produce consensus, the CSR developers were contacted to clarify. A single coder derived all cost information, the level of developer support, and the number of replicated schools for the reform models.

Seven of the nine attributes were coded “yes” or “no” for each reform. One attribute, ongoing access to technical support and assistance from the developer,
was adapted from the Herman et al. (1999) report, in which it was presented as a scale ranging from zero to 4. On this scale, a score of zero indicated that the developer provided no on-site or other assistance to help schools implement the model, essentially no contact with the school after CSR implementation, and no benchmarks or other useful tools for helping schools assess the progress of their implementation. A score of 4 indicated that the developer provided on-site and other assistance to help schools implement the model, maintained frequent contact with the school after CSR implementation, and provided useful benchmarks and tools for helping schools assess their progress. For reforms not rated in Herman et al. (1999), we used the same criteria to develop ratings on the same scale. There was little variation in ratings of reforms on the 0–4 scale. Most reforms were rated at 3 or 4; only one was rated at 2, none at 1 or zero. We therefore recoded this information into an indicator variable where 1 represented the highest support rating of 4 and zero indicated all of the other ratings.

The number of schools at which a reform was replicated was a continuous variable. This variable was based on the most recent information available regarding the number of schools being served by each of the CSR model developers. The NWREL (2000) catalog provided this information and the date associated with it. When the information was missing, or if the date was earlier than NWREL’s most recent update (May 1, 2001), we contacted the developers directly for up-to-date information.

We estimated the full costs for implementing each reform model, including nonpersonnel costs and costs for the 1st-year marginal personnel. Nonpersonnel costs included the amount a school would be expected to pay for all materials and services provided by the developer and any additional costs associated with computers, furnishings, and other items demanded by the reform model but not provided through the developer. Personnel costs included the costs of hiring any new staff associated with the reform (e.g., tutors, full-time facilitators, or coaches). In essence, these marginal cost estimates provided a worst-case scenario for the costs of the reform. They provided the total dollar amount of all resources that were demanded by the CSR model, regardless of whether schools could reallocate existing resources to the CSR implementation. For 21 reform models, the total marginal costs were estimated on the basis of information provided in the report by Herman et al. (1999). For the other 8 models, the costs were estimated from information from the developers. All costs were based on a school of 500 students and 25 teachers and were separated into the two distinct personnel and nonpersonnel cost variables.

Data Imputation

To use the greatest possible number of studies, we imputed estimates for sample size and standard deviation under a limited range of circumstances. In all cases, outcomes for which data were imputed were flagged with a dummy code. Two imputation dummy codes, one for sample size and one for standard deviation, were included as covariates in our final analyses of effect size.

Sample Size

If a study did not provide the student sample size, we estimated the number of students involved on the basis of national averages obtained from the 1998–1999 Common Core of Data from the National Center for Education Statistics. In addi-
tion, this procedure relied on information in the study indicating the grade level of the sampled students and the number of schools included in the analysis. For example, if an evaluation reported data for second graders in one school but not the actual sample size, we estimated the sample size to be 75, which is the average size of a school’s second-grade cohort according to national data from the 1998–1999 Common Core of Data.

For studies that used a district or state as the comparison group, we imputed the comparison group sample size as the treatment sample size rather than using the true district or state sample size. We used this method to avoid dramatically inflating the weights assigned to these studies and conferring an inappropriate level of precision on the results.

Standard Deviation

If we could not obtain the pooled standard deviation from a study, we imputed a standard deviation in one of two ways. First, if the test was a national standardized test, we consulted available norming data from the test developer to obtain a standard deviation. We took this approach when Normal Curve Equivalent (NCE) scores were presented without sample standard deviations. In such cases, we imputed the population standard deviation of 21.06 and flagged the case. Second, if the test was a state or local assessment for which the state or district maintained a Web page, we used the overall state or local standard deviation reported for the test, grade, and year that corresponded to our data. These strategies of using national-, state-, or local-population standard deviations are akin to methods outlined by Hedges (1981) for computing effect sizes, namely Cohen’s d or Hedges’s g, on the basis of the average, or pooled, standard deviation.

Independence of Observations

Several kinds of situations threatened the assumption of independence of observations, which is central to most forms of hypothesis testing. The most obvious of these were reports of duplicate samples, which could arise in three ways: (a) when researchers included the same sample in multiple studies; (b) when researchers presented multiple analyses of the same sample in one or more studies, for example by using somewhat different sets of covariates; and (c) when researchers duplicated a sample across a series of studies of multiyear outcomes, for example by reporting 1st-year results in a preliminary report and repeating in later reports (along with the outcomes for the 2nd and subsequent years of implementation) the analyses of the 1st-year sample as originally presented, or as the remaining longitudinal sample. In the first two situations, we accepted the first or main analysis of the sample and rejected subsequent reports of duplicate samples: The study with the earliest date, whether published or unpublished, was used for analysis. In the third situation, where longitudinal samples were involved, we used only the most recent outcomes for a given sample of students. In this way, we focused on the achievement effects from the longest exposure to the model by the school and students.9

Samples were further duplicated when results were reported both for a full student sample and for some clearly defined subsample, such as a separate racial or ethnic group or students who were low achievers at baseline. In such cases, only the full sample was included for our main analyses. Those samples best supported our analysis of the schoolwide effects of CSR.
The final way in which independence of observations was threatened involved multiple outcomes within a single achievement domain (e.g., language arts) or across two or more achievement domains (e.g., reading and math) for a distinct sample of students. Such situations were resolved by taking the mean effect size across all outcomes or domains, or both, for the main analysis. For example, if the same student sample had outcomes for reading comprehension, reading vocabulary, and math, the mean effect size across the three areas served to represent a single effect size for that sample. For our subanalyses of the outcomes for the separate subject areas, effect sizes for the various achievement domains were disaggregated and were estimated independently as subject-specific CSR effects.

Characteristics of the Selected Studies

From the 232 studies that met all inclusion criteria, 1,111 independent observations were defined. Each of the 1,111 observations was for a distinct CSR model and sample of students from which an effect size was computed. The school was the primary unit of analysis for the meta-analytic findings. It was selected because CSR is designed to affect whole schools and because schools typically were the unit of analysis reported in the primary studies. Key contextual characteristics, including the poverty level and years of CSR implementation, were also school-level features that we hoped to explore as predictors or moderators of effect size.

Reported within-school student sample sizes varied considerably, however. For example, some studies reported achievement data for an entire school, other studies reported data for a single grade level within a school, and still others reported data for a smaller sample of students within a grade level or school. As a result of these differences, we chose to weight all observations based on the student sample. Table 1 presents the number of studies, observations, and treatment and control students involved in the evaluations of all 29 CSR models. This table and Tables 2 and 3 summarize, respectively, the contextual characteristics of the CSR implementations that were studied, the methodological characteristics of the studies, and the coded attributes of each of the CSR models. The tables, which list the reforms alphabetically, reveal the diversity of the reform models and studies in the meta-analysis.

The contextual characteristics presented in Table 1 reveal that the number of studies and observations varied widely by reform model, from a low of 1 study with one observation for the Audrey Cohen College reform model to a high of 49 studies with 182 outcomes for the Direct Instruction model. The median number of studies was 4 and the median number of observations was 23. Overall, these studies involved 145,296 students participating in the CSR schools and 77,660 comparison students. The mean years of implementation across all reforms and studies was 2.96, and, on average, 65.06% of the students in the CSR schools were eligible for the free or reduced price lunch program.

Methodological characteristics are presented in Table 2. Nearly half of the outcomes were derived from one-group pretest-posttest study designs. Over 40% of the observations were from studies conducted by the developers, and about one third were from studies using true longitudinal sample designs. Outcome data were presented as means for most observations, followed by categorical data, and mixed outcome data. Less than 1% of the outcomes relied on correlational data. About three of four outcomes were based on elementary school samples.

(text continues on page 147)
TABLE 1
Means for the contextual moderator variables by CSR model

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of studies</th>
<th>Number of observations</th>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Accelerated Schools Project</td>
<td>6</td>
<td>50</td>
<td>4,127 1,231</td>
</tr>
<tr>
<td>America’s Choice School Design</td>
<td>2</td>
<td>27</td>
<td>8,922 5,655</td>
</tr>
<tr>
<td>ATLAS Communities</td>
<td>3</td>
<td>8</td>
<td>2,289 509</td>
</tr>
<tr>
<td>Audrey Cohen College</td>
<td>1</td>
<td>1</td>
<td>115 125</td>
</tr>
<tr>
<td>Center for Effective Schools</td>
<td>1</td>
<td>26</td>
<td>2,269 0</td>
</tr>
<tr>
<td>Child Development Program</td>
<td>2</td>
<td>2</td>
<td>318 262</td>
</tr>
<tr>
<td>Coalition of Essential Schools</td>
<td>3</td>
<td>6</td>
<td>666 115</td>
</tr>
<tr>
<td>Community for Learning</td>
<td>1</td>
<td>3</td>
<td>1,166 0</td>
</tr>
<tr>
<td>Community Learning Centers</td>
<td>5</td>
<td>17</td>
<td>163 11</td>
</tr>
<tr>
<td>Co-nect Schools</td>
<td>5</td>
<td>42</td>
<td>5,487 4,927</td>
</tr>
<tr>
<td>Core Knowledge</td>
<td>6</td>
<td>58</td>
<td>3,591 3,220</td>
</tr>
<tr>
<td>Different Ways of Knowing</td>
<td>2</td>
<td>3</td>
<td>1,205 870</td>
</tr>
<tr>
<td>Direct Instruction</td>
<td>49</td>
<td>182</td>
<td>22,562 20,056</td>
</tr>
<tr>
<td>Edison Project</td>
<td>5</td>
<td>209</td>
<td>18,955 5,616</td>
</tr>
<tr>
<td>Expeditionary Learning Outward Bound</td>
<td>6</td>
<td>40</td>
<td>3,136 1,927</td>
</tr>
<tr>
<td>High Schools That Work</td>
<td>45</td>
<td>64</td>
<td>20,471 1,740</td>
</tr>
<tr>
<td>High/Scope Primary Grades</td>
<td>4</td>
<td>23</td>
<td>1,220 1,217</td>
</tr>
<tr>
<td>Integrated Thematic Instruction</td>
<td>2</td>
<td>2</td>
<td>49 45</td>
</tr>
<tr>
<td>MicroSociety®</td>
<td>3</td>
<td>32</td>
<td>6,115 650</td>
</tr>
<tr>
<td>Modern Red Schoolhouse</td>
<td>6</td>
<td>23</td>
<td>3,979 2,213</td>
</tr>
<tr>
<td>Montessori</td>
<td>2</td>
<td>7</td>
<td>914 922</td>
</tr>
<tr>
<td>Onward to Excellence</td>
<td>4</td>
<td>13</td>
<td>3,530 0</td>
</tr>
<tr>
<td>Paideia</td>
<td>4</td>
<td>5</td>
<td>1,442 643</td>
</tr>
<tr>
<td>Roots & Wings</td>
<td>6</td>
<td>14</td>
<td>3,154 3,074</td>
</tr>
<tr>
<td>School Development Program</td>
<td>10</td>
<td>25</td>
<td>4,865 3,840</td>
</tr>
<tr>
<td>Success for All</td>
<td>42</td>
<td>173</td>
<td>18,523 17,820</td>
</tr>
<tr>
<td>Talent Development High Schools</td>
<td>1</td>
<td>2</td>
<td>803 870</td>
</tr>
<tr>
<td>The Learning Network</td>
<td>3</td>
<td>38</td>
<td>3,741 102</td>
</tr>
<tr>
<td>Urban Learning Center</td>
<td>3</td>
<td>16</td>
<td>1,524 0</td>
</tr>
<tr>
<td>All CSR models</td>
<td>232</td>
<td>1111</td>
<td>145,296 77,660</td>
</tr>
<tr>
<td>Model</td>
<td>One-group pre-post design</td>
<td>Study by developer</td>
<td>Longitudinal sample</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Accelerated Schools Project</td>
<td>0.86</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>America’s Choice School Design</td>
<td>0.52</td>
<td>0.52</td>
<td>0.41</td>
</tr>
<tr>
<td>ATLAS Communities</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Audrey Cohen College</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Center for Effective Schools</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Child Development Program</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Coalition of Essential Schools</td>
<td>0.83</td>
<td>0.00</td>
<td>0.83</td>
</tr>
<tr>
<td>Community for Learning</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Community Learning Centers</td>
<td>0.94</td>
<td>0.00</td>
<td>0.94</td>
</tr>
<tr>
<td>Co-nect Schools</td>
<td>0.14</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Core Knowledge</td>
<td>0.00</td>
<td>0.00</td>
<td>0.31</td>
</tr>
<tr>
<td>Different Ways of Knowing</td>
<td>0.33</td>
<td>0.33</td>
<td>0.00</td>
</tr>
<tr>
<td>Direct Instruction</td>
<td>0.17</td>
<td>0.08</td>
<td>0.63</td>
</tr>
<tr>
<td>Edison Project</td>
<td>0.75</td>
<td>0.69</td>
<td>0.06</td>
</tr>
<tr>
<td>Expeditionary Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outward Bound</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Model</th>
<th>One-group pre-post design</th>
<th>Study by developer</th>
<th>Longitudinal sample</th>
<th>Imputed data</th>
<th>Type of outcome data</th>
<th>Middle or high school outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>SD</td>
<td>N</td>
<td>SD</td>
<td>N</td>
<td>SD</td>
</tr>
<tr>
<td>High Schools That Work</td>
<td>0.94</td>
<td>0.95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.94</td>
<td>0.00</td>
</tr>
<tr>
<td>High/Scope Primary Grades</td>
<td>0.04</td>
<td>0.52</td>
<td>0.52</td>
<td>0.00</td>
<td>0.00</td>
<td>0.48</td>
</tr>
<tr>
<td>Integrated Thematic Instruction</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td>MicroSociety®</td>
<td>0.84</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.47</td>
<td>0.16</td>
</tr>
<tr>
<td>Modern Red Schoolhouse</td>
<td>0.39</td>
<td>0.52</td>
<td>0.04</td>
<td>0.00</td>
<td>0.74</td>
<td>0.00</td>
</tr>
<tr>
<td>Montessori</td>
<td>0.00</td>
<td>0.00</td>
<td>0.57</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Onward to Excellence</td>
<td>1.00</td>
<td>1.00</td>
<td>0.23</td>
<td>0.00</td>
<td>1.00</td>
<td>0.69</td>
</tr>
<tr>
<td>Paideia</td>
<td>0.40</td>
<td>0.00</td>
<td>0.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>Roots & Wings</td>
<td>0.21</td>
<td>0.64</td>
<td>0.07</td>
<td>0.00</td>
<td>0.93</td>
<td>0.36</td>
</tr>
<tr>
<td>School Development Program</td>
<td>0.28</td>
<td>0.64</td>
<td>0.32</td>
<td>0.00</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Success for All</td>
<td>0.06</td>
<td>0.45</td>
<td>0.75</td>
<td>0.00</td>
<td>0.38</td>
<td>0.08</td>
</tr>
<tr>
<td>Talent Development High Schools</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>The Learning Network</td>
<td>0.79</td>
<td>0.13</td>
<td>0.29</td>
<td>0.00</td>
<td>0.05</td>
<td>0.26</td>
</tr>
<tr>
<td>Urban Learning Center</td>
<td>1.00</td>
<td>1.00</td>
<td>0.13</td>
<td>0.00</td>
<td>0.88</td>
<td>1.00</td>
</tr>
<tr>
<td>All CSR Models</td>
<td>0.46</td>
<td>0.41</td>
<td>0.34</td>
<td>0.00</td>
<td>0.56</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Table 3
Summary of CSR model attributes

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of replication sites</th>
<th>First-year cost</th>
<th>Specific curriculum</th>
<th>Specific instruction</th>
<th>75% Faculty vote</th>
<th>Parent governance</th>
<th>Student assessment/benchmark</th>
<th>Ongoing professional development</th>
<th>High developer support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated Schools Project</td>
<td>1,300</td>
<td>$13,543</td>
<td>$14,585</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>America’s Choice School Design</td>
<td>450</td>
<td>$104,181</td>
<td>$93,763</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ATLAS Communities</td>
<td>105</td>
<td>$8,334</td>
<td>$93,763</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Audrey Cohen College</td>
<td>16</td>
<td>$78,135</td>
<td>$89,595</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Center for Effective Schools</td>
<td>1,000</td>
<td>$52,175</td>
<td>$55,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Child Development Program</td>
<td>165</td>
<td>$95,675</td>
<td>$65,000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Coalition of Essential Schools</td>
<td>1,000</td>
<td>$1</td>
<td>$250,000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Community for Learning</td>
<td>118</td>
<td>$78,135</td>
<td>$85,428</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Community Learning Centers</td>
<td>15</td>
<td>$1</td>
<td>$61,700</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Co-nect Schools</td>
<td>198</td>
<td>$1</td>
<td>$612,582</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Core Knowledge</td>
<td>1,020</td>
<td>$1</td>
<td>$58,341</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Different Ways of Knowing</td>
<td>600</td>
<td>$1</td>
<td>$87,512</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Direct Instruction</td>
<td>300</td>
<td>$52,090</td>
<td>$202,110</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Edison Project</td>
<td>136</td>
<td>$13,023</td>
<td>$72,926</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Expeditionary Learning</td>
<td>93</td>
<td>$1</td>
<td>$84,386</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Model</th>
<th>Number of replication sites</th>
<th>First-year cost$</th>
<th>Specific curriculum</th>
<th>Specific instruction</th>
<th>75% Faculty vote</th>
<th>Parent governance</th>
<th>Student assessment/benchmark</th>
<th>Ongoing professional development</th>
<th>High developer support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Personnel</td>
<td>Non-personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Schools That Work</td>
<td>1,300</td>
<td>$1</td>
<td>$50,007</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>High/Scope Primary Grades</td>
<td>100</td>
<td>$1</td>
<td>$135,435</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Integrated Thematic Instruction</td>
<td>1,434</td>
<td>$1</td>
<td>$61,235</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MicroSociety®</td>
<td>200</td>
<td>$52,175</td>
<td>$67,450</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Modern Red Schoolhouse</td>
<td>110</td>
<td>$1</td>
<td>$223,988</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Montessori</td>
<td>1,000</td>
<td>$159,723</td>
<td>$780,000</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Onward to Excellence</td>
<td>1,000</td>
<td>$12,502</td>
<td>$62,508</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Paideia</td>
<td>100</td>
<td>$52,090</td>
<td>$100,013</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Roots & Wings</td>
<td>200</td>
<td>$208,361</td>
<td>$72,926</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>School Development Program</td>
<td>600</td>
<td>$13,543</td>
<td>$33,338</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Success for All</td>
<td>1,800</td>
<td>$208,361</td>
<td>$72,926</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Talent Development High Schools</td>
<td>35</td>
<td>$31,254</td>
<td>$28,129</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>The Learning Network</td>
<td>200</td>
<td>$52,175</td>
<td>$32,188</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urban Learning Center</td>
<td>29</td>
<td>$10,418</td>
<td>$165,647</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>All CSR Models$</td>
<td>200</td>
<td>$13,023</td>
<td>$72,926</td>
<td>0.34</td>
<td>0.41</td>
<td>0.45</td>
<td>0.21</td>
<td>0.38</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Note.

$Median applied for Edison Project.

The summary line is reform-level, not observation-level, and presents medians for the number of replication sites and for costs and means for all other variables.
The CSR model attributes presented in Table 3 show that there is considerable variety among the 29 models in terms of their general characteristics and the components that they require in typical implementations. For example, 10 of the 29 reforms required specific curriculum materials (34%), and 12 required specific instructional practices (41%). Forty-five percent required a 75% faculty vote; 21% required a parent involvement program; 38% required student assessments and benchmarks; and 34% required ongoing professional development. More than half of the models received the highest rating for ongoing technical support. The number of replication sites varied widely from a low of 15 schools to a high of 1,800. First-year, worst-case scenario costs also varied widely: for personnel, from no cost to $208,361 for Roots & Wings and Success for All, with a median of $13,023; and for nonpersonnel costs, from $14,585 for Accelerated Schools Project to $780,000 for Montessori, with an overall median of $72,926. Edison Project was assigned the median values for personnel and nonpersonnel costs because this reform works within a school’s given budget.10

Results

Computation of Effect Sizes

Differences in the nature of the outcome data required nine separate methods for computing effect sizes. The nine methods were of three general types: (1) those that used means and standard deviations (six); (2) those that used frequency distributions (two); and (3) those that used correlations (one). For the first and second types, there was a further distinction between effect sizes based on treatment-control comparisons and those based on one-group pre-post designs.

The nine different formulas were all algebraically equivalent, and yielded estimates of the standardized mean difference or common effect size index known as Cohen’s d or Hedges’s g (Lipsey & Wilson, 2001). This equivalence was of importance, as we intended to combine the effect estimates from the various formulas in our analyses. Three of the six means-based effect size calculations relied on variations of the common formula

\[d = \frac{(M_T - M_C)}{S} \]

where $(M_T - M_C)$ is the difference between the CSR participants’ and nonparticipants’ group means, and S represents the pooled standard deviation. A variation of the formula for d involved adjusting for group differences on the pretest. If the two groups were shown to be similar at pretest, or there was some other statement of pre-intervention similarity, or the posttest group means were presented in the report as having been adjusted for pretest differences, then we simply used this common formula. For cases where there were pretest differences between participants and nonparticipants, but adjusted posttest means were not presented, we adjusted the posttest means ourselves using the pretest group means and the correlation between pretest and posttest.11

A second variation of the formula for d used participants’ and nonparticipants’ gain scores as estimates of means. If a comparison-group design was not used, another variation of this basic formula utilized only the participants’ mean gain score in the numerator. In this variation, the participants’ pretest in effect serves as the comparison. For both of these variations, the denominator was the pooled or population standard deviation on the posttest itself and not the standard deviation.
of the gain scores. Finally, three other methods for calculating an effect size used the test statistics \(t \) and \(F \) or used a \(p \) value when the actual group means were not presented in the study.

We used two methods for calculating effect sizes on the basis of categorical outcomes. When results from a \(\chi^2 \) analysis with \(df = 1 \) and total sample size \((N) \) were presented, we used these data to estimate an effect size directly. In other cases, we approximated an effect size \((d) \) based on an arcsine transformation of the proportion \((p) \) of successes for each group

\[
d = \text{arcsine} \left(p_1 \right) - \text{arcsine} \left(p_2 \right).
\]

Lipsey and Wilson (2001) stated that the arcsine transformation generally produces a more conservative estimate than the probit transformation and suggested that if effect sizes based on frequency distributions are to be included with other effect sizes based on means and standard deviations, as in the present research, a sensitivity analysis should be conducted to determine which to use.

Our sensitivity analysis showed that the arcsine and probit transformations produced similar overall means, but the probit transformation produced longer tails at both ends of the effect size distribution. Furthermore, the effect sizes based on a calculation of means and standard deviations from the actual grouped frequency distributions produced much higher estimates of \(d \) than either the arcsine or the probit transformation. For these reasons, we used the arcsine transformation for the cases where the outcome variable was noncontinuous.

The final method of effect size calculation used correlational data and applied only one formula, which used the correlation between group membership and the outcome variable. Again, this formula produced an effect index that was algebraically equivalent to an effect size based on means and standard deviations.

\section*{Computation of Variance Components, Weights, and Weighted Effect Sizes Within a Random-Effects Model}

From the outset, it was presumed that a random-effects model was most appropriate for the analysis of CSR effects for two reasons. First, the large number of potential methodological, programmatic, and contextual moderators, which were outlined earlier in the introduction, underlies the concept of a study’s true effect size as random (Raudenbush, 1994). Second, this set of potential moderators was not considered to be exhaustive. The qualities of instruction in the schools and the characteristics of local implementations, among other program attributes, were all assumed to contribute to the variation in the estimated effect sizes. Thus, it was hypothesized that various reforms, across programs and schools, would not yield the same fixed population effect.

To test whether the true effect size varied, in addition to the variability introduced by sampling variance, or estimation variance, a homogeneity test of the weighted effect-size estimates was performed. Because the value of 10,777.03 for the homogeneity test statistic, \(Q \), exceeded the upper-tail critical value of \(\chi^2 \) at 1110 degrees of freedom \((p < .001) \), the observed variance of the effect sizes was significantly greater than that which would be expected by chance if all observations shared the same population effect size. This statistical test confirmed the a priori assumption of a random-effects model specification.
The random-effects variance estimates, v^*_i, for the effect sizes for control group comparisons were computed on the basis of the formulas

$$v_i = \left[\frac{(N_T + N_C)}{(N_T \times N_C)} \right] + \left[\frac{d^2}{2(N_T + N_C)} \right]$$

and

$$v^*_i = \sigma_\theta^2 + v_i,$$

where v_i represents the within-study variance component, and σ_θ^2 is the between-studies or population variance component, which was calculated by the method-of-moments procedure explained by Raudenbush (1994). Given that there were no controls for the one-group, pretest-posttest outcomes, the variance formulas were

$$v_i = \left[\frac{1}{N_T} + d^2 \right] / (2 \times N_T)$$

and

$$v^*_i = \sigma_\theta^2 + v_i.$$

Finally, the formula for the computation of the weights, for each observation, i, under the assumptions of a random-effects model was

$$w_i = 1/v^*_i.$$

Distribution and Measures of Central Tendency for Effect Size

Our analysis of the effect size data began with an inspection of the distribution of the 1,111 unweighted effect sizes. This distribution is shown in Figure 1 as a stem and leaf plot. Applying Tukey’s (1977) definition, we identified as statistical outliers any effect sizes that were more than three interquartile ranges above the 75th percentile or below the 25th percentile. Of the 1,111 independent observations, 19, or 1.8%, met this definition.

Similarly, we identified statistical outliers from the distributions of treatment and control sample sizes, with 132, or 12%, of the 1,111 independent treatment samples meeting the Tukey (1977) criterion for statistical outliers. Of the control sample sizes, 75, or 13%, of the 598 independent samples met the criterion.

Statistical outliers may exert an overly strong influence on the results. Outliers on the dependent variable, effect size, are especially problematic, but outliers on sample size also are of concern. Because sample size plays an important role in weighting each effect size, unusually large samples may have an exceedingly large influence on the outcomes of our analyses. Therefore, we chose to Winsorize both effect sizes and sample sizes that were statistical outliers. In both cases, we set the value for the effect size or sample size to equal the value at three interquartile ranges beyond the 75th percentile or below the 25th percentile. Because some observations had multiple outlier values on these three variables, only 153 cases (13.7%) were involved in the Winsorizing. The 153 Winsorized cases were spread across 20 of the 29 reforms.

On the basis of the 1,111 unweighted mean effect sizes, we computed an overall weighted effect size. The unweighted average of the 1,111 effect sizes was .15 and the overall weighted value for d was also .15. The average weighted effect size, which is equivalent to a pre-post gain or CSR-control difference of 3.16 NCEs, was greater than 0, $Z = 13.11$, $p < .001$. The standard error of the weighted effect size, which is the square root of v^*, was .01. This standard error was employed to calculate
FIGURE 1. Stem and leaf plot of CSR effect sizes (n = 1,111 observations).
a 95% confidence interval for the average weighted effect size. The calculation resulted in a confidence interval of .13 to .18, or 2.74 to 3.79 NCEs. However, as Shadish and Haddock (1994) warned, because of the heterogeneity of the effect estimates, the average weighted effect size should not be interpreted as an estimate of a single population effect parameter but rather simply as describing the mean of the 1,111 observed effect sizes.

Regression Analysis of Weighted Effect Sizes on Mediating Variables

To explain the heterogeneity of the effect sizes, we performed a modified weighted multiple regression analysis using an SPSS macro, METAREG.SPS, provided by Lipsey and Wilson (2001). This macro modifies the output that would result from a regular weighted least squares multiple regression and provides the correct standard errors, confidence intervals, and significance tests for meta-analysis. The modified weighted least squares multiple regression analysis for random effects was performed using weighted effect size as the dependent measure and the moderator variables as predictors. As explained previously, an estimate of the residual variance component was computed as the random-effects variance plus the estimation variance, and weights were defined by the reciprocal of the residual variance component. Table 4 presents the results of the regression analysis.

TABLE 4

Summary of weighted least squares regression analysis for moderator variables predicting effect size

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>SE</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.21</td>
<td>0.28</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

Methodological variables

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>SE</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal sample</td>
<td>0.09</td>
<td>0.04</td>
<td>2.40*</td>
</tr>
<tr>
<td>Means-based effect size formula</td>
<td>0.06</td>
<td>0.03</td>
<td>1.89</td>
</tr>
<tr>
<td>Standard deviation was imputed</td>
<td>-0.09</td>
<td>0.03</td>
<td>-2.72**</td>
</tr>
<tr>
<td>Sample size was imputed</td>
<td>-0.03</td>
<td>0.03</td>
<td>-1.52</td>
</tr>
<tr>
<td>Evaluation was conducted by the developer</td>
<td>0.16</td>
<td>0.03</td>
<td>4.87***</td>
</tr>
<tr>
<td>Study design was one-group pre-post</td>
<td>0.08</td>
<td>0.03</td>
<td>2.35*</td>
</tr>
<tr>
<td>Middle school or high school outcome</td>
<td>0.03</td>
<td>0.03</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Reform attribute variables

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>SE</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reform requires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific curriculum materials</td>
<td>-0.06</td>
<td>0.06</td>
<td>-0.86</td>
</tr>
<tr>
<td>Specific instructional practices</td>
<td>0.01</td>
<td>0.06</td>
<td>0.24</td>
</tr>
<tr>
<td>75% faculty vote for adoption</td>
<td>0.05</td>
<td>0.04</td>
<td>1.34</td>
</tr>
<tr>
<td>Parent governance</td>
<td>-0.09</td>
<td>0.04</td>
<td>-2.32*</td>
</tr>
<tr>
<td>Goals and benchmarks</td>
<td>0.01</td>
<td>0.04</td>
<td>0.21</td>
</tr>
<tr>
<td>Ongoing professional development</td>
<td>-0.09</td>
<td>0.05</td>
<td>-1.71</td>
</tr>
<tr>
<td>Replication</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.22</td>
</tr>
<tr>
<td>High developer support rating</td>
<td>-0.01</td>
<td>0.04</td>
<td>-0.20</td>
</tr>
<tr>
<td>Cost of reform: Personnel</td>
<td>0.00</td>
<td>0.00</td>
<td>1.17</td>
</tr>
<tr>
<td>Cost of reform: Nonpersonnel</td>
<td>0.02</td>
<td>0.02</td>
<td>0.95</td>
</tr>
</tbody>
</table>

* * p < .05. ** p < .01. *** p < .001.
All moderator variables accounted for 8% of the variance in the weighted effect sizes. Full descriptions of the variables entered into the regression model are provided in the Method section. First, the comparison group indicator contrasted those observations based on a single-group pre-post design to observations that were based on quasi-experimental nonequivalent control-group designs and true randomized designs. The positive coefficient indicated that the one-group comparisons yielded relatively larger mean effect sizes. The magnitude of the coefficient suggested that, after controlling for the other variables in the model, comparisons using control groups produced effect size estimates .08, or about 1.7 NCEs, less than estimates generated by one-group, pre-post analyses of treatment effects.

Second, as expected, the model indicated that effect sizes produced by developers’ evaluations were greater than those produced by other researchers’ evaluations. The coefficient suggested that, after statistically taking into account the other moderators, evaluations by developers produced effect size estimates .16, or 3.4 NCEs, greater than those produced by external evaluations. Third, use of a longitudinal sample produced a larger effect size than use of other sample types, about .09 greater. This suggests that when researchers measure CSR effects over time on the same longitudinal sample of students the results tend to show stronger achievement effects than when researchers track effects across successive cohorts of students. Fourth, those outcomes that were estimated with imputed standard deviations had smaller effect sizes than those that were based on actual, reported standard deviations.

Finally, only one reform model component was a statistically significant predictor of effect size, and the relationship was in an unexpected direction. Namely, models that required a component designed to involve parents in school governance and improvement had smaller effects on achievement than models that did not require this form of parent participation.

School Poverty Level and Years of Implementation as Moderators of Effect Size

A subset of studies had complete data indicating the CSR school’s free or reduced-price lunch participation rate. Of the 1,111 independent observations, 630 (57%) had complete data indicating the poverty level of the CSR school. Similarly, a subset of 975 of the 1,111 observations, or 88%, had complete data indicating the number of years that the CSR model had been implemented at the school.

After regressing weighted effect size on the methodological moderator variables, we obtained the residuals from the regression and added the mean weighted effect size to each observation. In this way, we calculated effect sizes that were statistically adjusted for all of the methodological variables. These adjusted effect sizes became the outcome measures for our subanalyses of the relationship between school poverty and years of implementation and CSR effects.

The weighted regression model using poverty level to predict adjusted effect size revealed that a school’s poverty level was not a statistically significant predictor of effect size (Z = .12). In other words, across the range of school poverty levels, which tended to be relatively high, CSR was equally effective in relatively lower- and higher-poverty schools.

In a separate weighted regression model, years of implementation was a statistically significant predictor of effect size, with a coefficient of .02 (Z = 2.82, p < .01). Figure 2 displays the relationship between years of implementation and effect size. This figure shows that the CSR effect size, .17, was relatively strong during the 1st
During the 2nd, 3rd, and 4th years of implementation, however, the effect declined slightly but, essentially, remained the same. After the 5th year of implementation, CSR effects began to increase substantially. Schools that had implemented CSR models for 5 years showed achievement advantages that were nearly twice those found for CSR schools in general, and after 7 years of implementation, the effects were more than two and half times the magnitude of the overall CSR impact of $d = .15$. The small number of schools that had outcome data after 8 to 14 years of CSR model implementation achieved effects that were three and a third times larger than the overall CSR effect.

Analysis of Subject Area as Moderator of Effect Size

A different level of aggregation of the outcome data was used to analyze the effects for different subject areas. In previous analyses, to retain independent samples of students, we took the mean outcome for students tested across more than one area. For instance, in studies of students attending a CSR school who took both math and reading tests, we aggregated the effects across both subjects and generated a single effect size for the student sample. Our analyses by subject area, however, maintained independence of observations by analyzing the effects in each subject area separately. All cases had information regarding the subject area evaluated, although some cases presented data for mixed subjects or for more general achievement outcomes. In all other ways, the database used in this analysis was similar to those used for the main analyses and for the subanalyses of school poverty and years of implementation.

The data for these analyses included 1,017 independent samples for reading, 679 for math, 229 for science, 138 for social studies, and 95 cases that could not be grouped into the other subject areas, either because the original research reported results with subjects grouped, or because the achievement test was more general in focus. With a mean effect size of .13 ($Z = 10.81, p < .001$) for reading, CSR had a
statistically significant effect that was somewhat lower than the effect size found for CSR overall. The CSR effect size for math was essentially the same as the overall CSR effect, and slightly higher than the effect for reading, \(d = .15 \) (\(Z = 9.86, p < .001 \)). The CSR effect on science outcomes was somewhat lower than the effects for math and reading, \(d = .09 \) (\(Z = 3.79, p < .001 \)), but was also statistically significant. CSR did not have a statistically significant effect (\(Z = 0.72 \)) on social studies outcomes. Finally, the cases with outcome data for the general subject area revealed a relatively large CSR effect, \(d = .20 \), but also a high standard error (.05) and a wide 95% confidence interval, \(d = .10 \) to \(d = .31 \). This confidence interval, however, did not include zero, and the result was statistically significant (\(Z = 3.86, p < .001 \)).

Evidence of Effectiveness for the 29 CSR Models

Tables 5, 6, and 7 present the weighted mean effect size, \(d \), the associated significance test, \(Z \), and 95% confidence intervals, which represent the expected range of effects, separately by CSR model. Table 5 displays all available evidence concerning the achievement effects of each of the 29 models, regardless of the nature or quality of the study designs. Table 6 presents results for only those cases that used some form of control group, and Table 7 shows results for only those cases that were third-party control-group studies. The latter two, more restrictive presentations of the data provide the best evidence for evaluating the effects of the reform models, in that our prior regression analysis demonstrated that studies performed by the developer and those that used one-group pre-post designs yielded potential biases relative to third-party and control-group comparisons.

The names of the CSR models are listed along the left-hand side of Tables 5, 6, and 7 and are grouped into four categories:

- **Strongest Evidence of Effectiveness**;
- **Highly Promising Evidence of Effectiveness**;
- **Promising Evidence of Effectiveness**; and
- **Greatest Need for Additional Research**.

The four categories were established on the basis of a combination of three criteria:

1. **Quality of the evidence**: Does the CSR model have research evidence from the highest-quality studies: control-group studies and third-party control group studies?
2. **Quantity of the evidence**: Does the CSR model have a relatively large number of studies and observations from which one may generalize the findings to the population of schools in the U.S. that are likely to adopt and implement CSR models? (For instance, we used 10 or more studies overall and 5 or more third-party control-group studies as the, arguably arbitrary, standards necessary to be in the top category.)
3. **Statistically significant and positive results**: Does the evidence from control-group studies show that the effects of the reform on achievement are positive and statistically greater than zero?

Within each of the four categories, the models in each table are listed alphabetically. More information regarding the nature of the reform models along with (text continues on page 161)
<table>
<thead>
<tr>
<th>Model</th>
<th>Studies</th>
<th>Observations</th>
<th>d</th>
<th>SE</th>
<th>95% CI</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td>Lower bound</td>
<td>Upper bound</td>
</tr>
<tr>
<td>Strongest Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Instruction</td>
<td>49</td>
<td>182</td>
<td>0.21</td>
<td>0.02</td>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>School Development Program</td>
<td>10</td>
<td>25</td>
<td>0.15</td>
<td>0.03</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Success for All</td>
<td>42</td>
<td>173</td>
<td>0.18</td>
<td>0.01</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>Highly Promising Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expeditionary Learning Outward Bound</td>
<td>6</td>
<td>40</td>
<td>0.19</td>
<td>0.03</td>
<td>0.13</td>
<td>0.25</td>
</tr>
<tr>
<td>Modern Red Schoolhouse</td>
<td>6</td>
<td>23</td>
<td>0.26</td>
<td>0.03</td>
<td>0.20</td>
<td>0.31</td>
</tr>
<tr>
<td>Roots & Wings</td>
<td>6</td>
<td>14</td>
<td>0.38</td>
<td>0.04</td>
<td>0.29</td>
<td>0.46</td>
</tr>
<tr>
<td>Promising Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerated Schools</td>
<td>6</td>
<td>50</td>
<td>0.09</td>
<td>0.02</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>America’s Choice</td>
<td>2</td>
<td>27</td>
<td>0.22</td>
<td>0.01</td>
<td>0.20</td>
<td>0.24</td>
</tr>
<tr>
<td>ATLAS Communities</td>
<td>3</td>
<td>8</td>
<td>0.27</td>
<td>0.02</td>
<td>0.24</td>
<td>0.31</td>
</tr>
<tr>
<td>Montessori</td>
<td>2</td>
<td>7</td>
<td>0.27</td>
<td>0.04</td>
<td>0.19</td>
<td>0.35</td>
</tr>
<tr>
<td>Paideia</td>
<td>4</td>
<td>5</td>
<td>0.30</td>
<td>0.12</td>
<td>0.06</td>
<td>0.53</td>
</tr>
<tr>
<td>The Learning Network</td>
<td>3</td>
<td>38</td>
<td>0.22</td>
<td>0.02</td>
<td>0.17</td>
<td>0.26</td>
</tr>
<tr>
<td>Greatest Need for Additional Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audrey Cohen</td>
<td>1</td>
<td>1</td>
<td>-0.13</td>
<td>0.11</td>
<td>0.11</td>
<td>0.15</td>
</tr>
<tr>
<td>Center for Effective Schools</td>
<td>1</td>
<td>26</td>
<td>0.13</td>
<td>0.01</td>
<td>0.11</td>
<td>0.24</td>
</tr>
<tr>
<td>Child Development Project</td>
<td>2</td>
<td>2</td>
<td>0.12</td>
<td>0.06</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td>Model</td>
<td>Studies</td>
<td>Observations</td>
<td>d</td>
<td>SE</td>
<td>Lower bound</td>
<td>Upper bound</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>--------------</td>
<td>------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Coalition of Essential Schools</td>
<td>3</td>
<td>6</td>
<td>-0.09</td>
<td>0.04</td>
<td>-0.17</td>
<td>-0.01</td>
</tr>
<tr>
<td>Community for Learning</td>
<td>1</td>
<td>3</td>
<td>0.15</td>
<td>0.01</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>Community Learning Centers</td>
<td>5</td>
<td>17</td>
<td>0.03</td>
<td>0.03</td>
<td>-0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>Co-nect</td>
<td>5</td>
<td>42</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Core Knowledge</td>
<td>6</td>
<td>58</td>
<td>0.03</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>Different Ways of Knowing</td>
<td>2</td>
<td>3</td>
<td>0.00</td>
<td>0.02</td>
<td>-0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Edison</td>
<td>5</td>
<td>209</td>
<td>0.06</td>
<td>0.01</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>High Schools That Work</td>
<td>45</td>
<td>64</td>
<td>0.30</td>
<td>0.01</td>
<td>0.28</td>
<td>0.33</td>
</tr>
<tr>
<td>High/Scope</td>
<td>4</td>
<td>23</td>
<td>-0.02</td>
<td>0.04</td>
<td>-0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>Integrated Thematic Instruction</td>
<td>2</td>
<td>2</td>
<td>0.24</td>
<td>0.19</td>
<td>-0.13</td>
<td>0.62</td>
</tr>
<tr>
<td>MicroSociety</td>
<td>3</td>
<td>32</td>
<td>0.29</td>
<td>0.03</td>
<td>0.24</td>
<td>0.34</td>
</tr>
<tr>
<td>Onward to Excellence II</td>
<td>4</td>
<td>13</td>
<td>0.25</td>
<td>0.03</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>Talent Development High School</td>
<td>1</td>
<td>2</td>
<td>0.14</td>
<td>0.03</td>
<td>0.09</td>
<td>0.19</td>
</tr>
<tr>
<td>Urban Learning Centers</td>
<td>3</td>
<td>16</td>
<td>-0.03</td>
<td>0.03</td>
<td>-0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>All CSR models</td>
<td>232</td>
<td>1111</td>
<td>0.15</td>
<td>0.00</td>
<td>0.14</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Note. Please refer to text for description of the evidence of effectiveness categories. Effect sizes are presented as Cohen’s d.

* CI = confidence interval (“lower bound” and “upper bound” refer to the bounds of the confidence interval).

* $p < .05$. ** $p < .01$.
TABLE 6

Weighted mean effect sizes by CSR model: Comparison studies only

<table>
<thead>
<tr>
<th>Model</th>
<th>Studies</th>
<th>Observations</th>
<th>d</th>
<th>SE</th>
<th>95% CI</th>
<th>Lower bound</th>
<th>Upper bound</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongest Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Instruction</td>
<td>40</td>
<td>151</td>
<td>0.15</td>
<td>0.02</td>
<td>0.12</td>
<td>0.19</td>
<td></td>
<td>8.40**</td>
</tr>
<tr>
<td>School Development Program</td>
<td>9</td>
<td>18</td>
<td>0.05</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.12</td>
<td></td>
<td>1.57</td>
</tr>
<tr>
<td>Success for All</td>
<td>41</td>
<td>162</td>
<td>0.18</td>
<td>0.01</td>
<td>0.16</td>
<td>0.20</td>
<td></td>
<td>15.32**</td>
</tr>
<tr>
<td>Highly Promising Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expeditionary Learning Outward Bound</td>
<td>4</td>
<td>14</td>
<td>0.51</td>
<td>0.07</td>
<td>0.38</td>
<td>0.64</td>
<td></td>
<td>7.50**</td>
</tr>
<tr>
<td>Modern Red Schoolhouse</td>
<td>4</td>
<td>14</td>
<td>0.17</td>
<td>0.04</td>
<td>0.10</td>
<td>0.25</td>
<td></td>
<td>4.48**</td>
</tr>
<tr>
<td>Roots & Wings</td>
<td>5</td>
<td>11</td>
<td>0.35</td>
<td>0.05</td>
<td>0.25</td>
<td>0.46</td>
<td></td>
<td>6.68**</td>
</tr>
<tr>
<td>Promising Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerated Schools</td>
<td>3</td>
<td>7</td>
<td>0.21</td>
<td>0.07</td>
<td>0.07</td>
<td>0.36</td>
<td></td>
<td>2.93**</td>
</tr>
<tr>
<td>America’s Choice</td>
<td>1</td>
<td>13</td>
<td>0.25</td>
<td>0.01</td>
<td>0.23</td>
<td>0.27</td>
<td></td>
<td>20.75**</td>
</tr>
<tr>
<td>ATLAS Communities</td>
<td>2</td>
<td>2</td>
<td>0.40</td>
<td>0.03</td>
<td>0.33</td>
<td>0.46</td>
<td></td>
<td>12.15**</td>
</tr>
<tr>
<td>Montessori</td>
<td>2</td>
<td>7</td>
<td>0.27</td>
<td>0.04</td>
<td>0.19</td>
<td>0.35</td>
<td></td>
<td>6.55**</td>
</tr>
<tr>
<td>Paideia</td>
<td>3</td>
<td>3</td>
<td>0.57</td>
<td>0.18</td>
<td>0.22</td>
<td>0.93</td>
<td></td>
<td>3.16**</td>
</tr>
<tr>
<td>The Learning Network</td>
<td>1</td>
<td>8</td>
<td>0.33</td>
<td>0.04</td>
<td>0.25</td>
<td>0.41</td>
<td></td>
<td>8.18**</td>
</tr>
<tr>
<td>Greatest Need for Additional Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audrey Cohen</td>
<td>1</td>
<td>1</td>
<td>-0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center for Effective Schools</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Model</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Child Development Project</td>
<td>2</td>
</tr>
<tr>
<td>Coalition of Essential Schools</td>
<td>1</td>
</tr>
<tr>
<td>Community for Learning</td>
<td>0</td>
</tr>
<tr>
<td>Community Learning Centers</td>
<td>1</td>
</tr>
<tr>
<td>Co-nect</td>
<td>5</td>
</tr>
<tr>
<td>Core Knowledge</td>
<td>6</td>
</tr>
<tr>
<td>Different Ways of Knowing</td>
<td>1</td>
</tr>
<tr>
<td>Edison</td>
<td>3</td>
</tr>
<tr>
<td>High Schools That Work</td>
<td>4</td>
</tr>
<tr>
<td>High/Scope</td>
<td>3</td>
</tr>
<tr>
<td>Integrated Thematic Instruction</td>
<td>1</td>
</tr>
<tr>
<td>MicroSociety</td>
<td>1</td>
</tr>
<tr>
<td>Onward to Excellence II</td>
<td>0</td>
</tr>
<tr>
<td>Talent Development</td>
<td>0</td>
</tr>
<tr>
<td>High School</td>
<td>1</td>
</tr>
<tr>
<td>Urban Learning Centers</td>
<td>0</td>
</tr>
<tr>
<td>All CSR models</td>
<td>145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>95% CIa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower bound</td>
</tr>
<tr>
<td>Upper bound</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.24</td>
</tr>
<tr>
<td>1.90</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.24</td>
</tr>
<tr>
<td>–0.06</td>
</tr>
<tr>
<td>0.06</td>
</tr>
<tr>
<td>1.95</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.26</td>
</tr>
<tr>
<td>1.95</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.26</td>
</tr>
<tr>
<td>1.95</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

Note. Please refer to text for description of the evidence of effectiveness categories. Effect sizes are presented as Cohen’s d.

*a CI = confidence interval (“lower bound” and “upper bound” refer to the bounds of the confidence interval).

*p < .05. **p < .01.
TABLE 7

Weighted mean effect sizes by CSR model: Third-party comparison studies

<table>
<thead>
<tr>
<th>Model</th>
<th>Third-party comparison studies</th>
<th>95% CI</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongest Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Instruction</td>
<td>38</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>School Development Program</td>
<td>5</td>
<td>0.11</td>
<td>0.04</td>
</tr>
<tr>
<td>Success for All</td>
<td>25</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>Highly Promising Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expeditionary Learning Outward Bound</td>
<td>3</td>
<td>0.02</td>
<td>-0.09</td>
</tr>
<tr>
<td>Modern Red Schoolhouse</td>
<td>3</td>
<td>0.21</td>
<td>0.11</td>
</tr>
<tr>
<td>Roots & Wings</td>
<td>4</td>
<td>0.77</td>
<td>0.64</td>
</tr>
<tr>
<td>Promising Evidence of Effectiveness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerated Schools</td>
<td>2</td>
<td>0.13</td>
<td>-0.06</td>
</tr>
<tr>
<td>America’s Choice</td>
<td>1</td>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>ATLAS Communities</td>
<td>2</td>
<td>0.40</td>
<td>0.33</td>
</tr>
<tr>
<td>Montessori</td>
<td>2</td>
<td>0.27</td>
<td>0.19</td>
</tr>
<tr>
<td>Paideia</td>
<td>3</td>
<td>0.57</td>
<td>0.22</td>
</tr>
<tr>
<td>The Learning Network</td>
<td>1</td>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td>Greatest Need for Additional Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audrey Cohen</td>
<td>1</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>Center for Effective Schools</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child Development Project</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coalition of Essential Schools</td>
<td>1</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Community for Learning</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Learning Centers</td>
<td>1</td>
<td>-0.06</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Model</th>
<th>Studies N</th>
<th>Observations N</th>
<th>d</th>
<th>SE</th>
<th>95% CI*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower bound</td>
</tr>
<tr>
<td>Co-nect</td>
<td>4</td>
<td>34</td>
<td>-0.01</td>
<td>0.02</td>
<td>-0.04</td>
</tr>
<tr>
<td>Core Knowledge</td>
<td>6</td>
<td>58</td>
<td>0.03</td>
<td>0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td>Different Ways of Knowing</td>
<td>1</td>
<td>2</td>
<td>-0.04</td>
<td>0.03</td>
<td>-0.10</td>
</tr>
<tr>
<td>Edison</td>
<td>3</td>
<td>53</td>
<td>-0.13</td>
<td>0.02</td>
<td>-0.17</td>
</tr>
<tr>
<td>High Schools That Work</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High/Scope</td>
<td>2</td>
<td>11</td>
<td>-0.04</td>
<td>0.05</td>
<td>-0.15</td>
</tr>
<tr>
<td>Integrated Thematic Instruction</td>
<td>1</td>
<td>1</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicroSociety</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onward to Excellence II</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talent Development</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Learning Centers</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All CSR models</td>
<td>109</td>
<td>461</td>
<td>0.09</td>
<td>0.01</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Note. Please refer to text for description of the evidence of effectiveness categories. Effect sizes are presented as Cohen’s d.

* CI = confidence interval (“lower bound” and “upper bound” refer to the bounds of the confidence interval).

* p < .05. ** p < .01.
narrative descriptions of the supporting research base for each may be found in the appendix.13

Strongest Evidence of Effectiveness

CSR models in the category *Strongest Evidence of Effectiveness* include those that have 10 or more studies of schools and students across the United States, such that their outcomes have been replicated in a number of contexts and are reasonably generalizable to the population of U.S. schools that are likely to adopt and implement CSR models. These models also have been shown to have *statistically significant and positive* achievement effects in studies using comparison groups or third-party comparison designs and have accumulated evidence from at least 5 third-party comparison studies. Three reforms—Direct Instruction, School Development Program, and Success for All—met the criteria for this category.

Direct Instruction has an overall effect size of $d = .21 (Z = 11.61, p < .01)$, with a 95% confidence interval of $d = .17$ to $d = .25$. The confidence interval expresses the degree of accuracy of the effect size estimate and suggests a range of effects that are likely to be found in similar implementations and studies of the reform model. In this case, similar implementations and studies of Direct Instruction are likely to reveal effects between $d = .17$ and $d = .25$. The effects for Direct Instruction estimated from comparison and third-party comparison designs were somewhat lower than the overall effects, but still positive and statistically significant, $d = .15 (Z = 8.40, p < .01)$ and $d = .15 (Z = 7.82, p < .01)$, respectively.

The School Development Program is another model meeting the highest standard of research evidence, with an overall effect size of $d = .15 (Z = 5.48, p < .01)$ and a 95% confidence interval of $d = .10$ to $d = .20$. As with Direct Instruction, the effects of the School Development Program drop considerably when we look only at effects for comparison or third-party comparison studies, $d = .05 (Z = 1.57, ns)$ and $d = .11 (Z = 3.23, p < .01)$, respectively.

Success for All is the third model in the *Strongest Evidence of Effectiveness* category, with an overall effect size of $d = .18 (Z = 16.57, p < .01)$ and a 95% confidence interval of $d = .16$ to $d = .21$. The effects are essentially the same when we consider only Success for All comparison studies, $d = .18 (Z = 15.32, p < .01)$, as most Success for All evaluations use a comparison group design. The effect estimate from Success for All third-party comparison studies, $d = .08 (Z = 5.08, p < .01)$, is considerably less but still statistically significant.

Highly Promising Evidence of Effectiveness

Models in the category *Highly Promising Evidence of Effectiveness* are those that had positive and statistically significant results from comparison or third-party comparison studies but did not have research bases that were as broad and generalizable as those of the models that met the highest standard. These models have 5 or more studies total and 3 or more third-party comparison-group studies. Three reform models met the criteria for this category: Expeditionary Learning Outward Bound, $d = .19$; Modern Red Schoolhouse, $d = .26$; and Roots & Wings, $d = .38$.

Promising Evidence of Effectiveness

Models meeting the standard of evidence of the category *Promising Evidence of Effectiveness* were reforms that had 2 or more studies total and at least 1 third-party
comparison-group study but still too few to generalize from their results with confidence. All of these CSR models, however, had statistically significant positive effects from comparison or third-party comparison studies. The reforms in this category were Accelerated Schools, with an overall effect size of \(d = .09\); America’s Choice, with an effect size of \(d = .22\); Atlas Communities, \(d = .27\); Montessori, \(d = .27\); Paideia, \(d = .30\); and The Learning Network, \(d = .22\).

Greatest Need for Additional Research

The category *Greatest Need for Additional Research* included reforms with only one study or those that did not have evidence of statistically significant positive achievement effects from comparison or third-party comparison studies. Seventeen of the 29 CSR models fell into this category. Nearly all of the reforms in this category were there because too few studies have been done to establish statistically reliable and generalizable results. Four of the 17 models had no evidence from either comparison or third-party comparison studies, and another four models lacked evidence from third-party comparison studies. Finally, four CSR models had only a single effect estimate from both comparison and third-party comparison studies. However, there are a number of models, including the Center for Effective Schools, Community for Learning, Co-nect, Core Knowledge, MicroSociety, Onward to Excellence II, and Talent Development High Schools, that have promising early data but need several more rigorous evaluations to establish a stronger research base.

Two CSR models in this category presented unusual cases that are worthy of discussion. First, the High Schools That Work model has a large research base, composed almost entirely of one-group pre-post evaluations performed by its developer. The magnitude of the effect size from these studies, \(d = .30\), is relatively large, but the effect size from the one comparison-group study of High Schools That Work actually revealed a statistically significant negative effect of the model, \(d = -.06\). This model has been widely replicated and studied and, in many ways, appears to be a promising high school intervention. That the model has been replicated with such success has been so well supported by the developer and accumulated a large number of one-group pre-post evaluations is, indeed, laudable. For many schools, this type of evidence may be sufficient to convince decision makers that the model is worthy of adoption. However, more research using control groups is needed to help clearly establish the model’s apparent benefits.

Second, although only five studies of the Edison Project have been conducted, they have evaluated the reform in a large number of schools. Taking all of the evidence, Edison appeared to have a statistically significant positive effect size, \(d = .06\). When examining the reports of third-party evaluators using comparison groups, however, the results revealed a statistically significant negative effect, \(d = -.13\). Again, additional studies using comparison groups are needed, both from the developer and from third-party evaluators, to help reconcile these differences.

Discussion

CSR and the CSRP are at the forefront of the national movement to base educational policy and practice on solid research evidence. The recent reauthorization of the Elementary and Secondary Education Act of 1965 and the federal government’s single largest investment in America’s elementary and secondary schools, the No Child Left Behind Act, have similarly required practices based on high-
quality research for everything from the technical assistance to schools to the choice of anti-drug-abuse programs. Like a mantra, the No Child Left Behind Act repeats phrases such as “scientifically based research” more than 100 times (Olson & Viadero, 2002). This legislation, urging the use of research-based educational practices and procedures in schools receiving federal CSRP and Title I funding, has the potential to revolutionize school improvement in some of the most challenging contexts in the United States.

Do the quantity and quality of the CSR literature provide the scientifically based evidence needed to identify the proven programs and practices that these new policies demand? Our research has sought to understand the CSR research base in various ways. We have described the overall characteristics of the diverse literature; we have identified its biases; and we have empirically established the best evidence that researchers, policymakers, and practitioners should apply to understanding the effects of CSR models. We have estimated the overall effects of the most widely used, nationally disseminated, externally developed CSR models and have gained insight into the overall effects of CSR as a national policy movement. We have also established that there is considerable variation in these effects that is explained by the models themselves, methods used in evaluating the models, and the circumstances in which the programs were implemented. Looking across the 232 studies of CSR and our various analyses of them, the evidence supports six primary findings.

The Characteristics of the CSR Research Base

First, CSR is still an evolving field, and there are clear limitations on the overall quantity and quality of studies supporting its achievement effects. Only 12 reform models are supported by five or more studies of their achievement effects. Only 4 models have been the subject of five or more third-party studies that used comparison groups. More than 40% of the analyses of CSR effects have been performed by the developers, and about half of the analyses have used some type of quasi-experimental control group. Only seven studies of 3 CSR models, or about 3% of all studies of the achievement effects associated with CSR, have generated evidence from randomized experiments. These reform models and studies include the School Development Program (Cook, Habib, Phillips, Settersten, Shagle, & Degirmencioglu, 1999; Cook, Hunt, & Murphy, 1999); Direct Instruction (Crawford & Snyder, 2000; Grossen & Ewing, 1994; Ogletree, 1976; Richardson, Dibenedetto, Christ, Press, & Winsbert, 1978); and Paideia (Tarkington, 1989). In addition to these shortcomings, many of the studies did not present sufficient detail to allow for replication of the findings. For instance, substantial numbers of reports contained no information about student sample sizes and did not provide standard deviations for the outcome measures.

Many of these problems, however, are to be expected given the recent emergence of CSR, in general, and many of the CSR models, in particular. Some models are at an early stage of program development that has not yet demanded third-party evaluations and more costly and difficult control-group comparisons. On the other hand, some models have relatively long histories, have been replicated in many schools, and should have accumulated such evidence. Still other CSR models are on their way to establishing a strong research base. Three models, in particular, have accumulated enough evidence to meet our highest standard of
research evidence. Taken as a whole, there is a sufficient number of reasonably high-quality studies of CSR to evaluate its overall effects and to inform policy.

The Overall Effects of CSR

Second, the overall effects of CSR are statistically significant, meaningful, and appear to be greater than the effects of other interventions that have been designed to serve similar purposes and student and school populations. Overall, CSR schools can be expected to score one eighth of a standard deviation, or 2.5 NCEs, higher on achievement tests than non-CSR schools. Because the method of resource reallocation allows high-poverty schools to implement reform models at little or no extra cost, CSR can be a very cost-effective strategy for improving achievement outcomes. Our various analyses suggest that CSR schools can be expected to score between nearly one-tenth and one-seventh of a standard deviation, or between 1.9 NCEs and 3.2 NCEs higher than control schools on achievement tests. The low-end estimate represents the overall effect size of \(d = .09 \) for third-party studies using comparison groups, and the high-end estimate represents the effect size of \(d = .15 \) for all evaluations of the achievement effects of CSR. Using a metric devised by Cohen (1988), \(U_3 \), the effect size of \(d = .12 \) for all studies using control groups tells us that the average school implementing a CSR program outperformed about 55% of similar control schools that did not implement a CSR model.

How should we interpret this overall effect? Cooper (1981) has suggested a comprehensive approach to effect size interpretation that uses multiple criteria and benchmarks for understanding the magnitude of the effect. First, and most generally, we may compare the overall CSR effect size to Cohen’s (1988) definitions of a small effect within the behavioral sciences, \(d = .20 \), and a large effect, \(d = .80 \). Second, and more specifically, Cohen (1988) pointed out that the relatively small effects of around \(d = .20 \) were most representative of fields closely aligned with education, such as personality, social, and clinical psychology. Similarly, Lipsey and Wilson’s (1993) more recent compendium of meta-analyses concluded that psychological, educational, and behavioral treatment effects of modest values of even \(d = .10 \) to \(d = .20 \) should not be interpreted as trivial.

Finally, and even more specifically, how do CSR effects compare to previous national efforts to help close the achievement gap and improve the outcomes of large numbers of high-poverty and low-achieving students and schools? The most obvious comparison to the effect of CSR is the effect of traditional Title I programs, which historically have funded targeted remedial interventions such as pull-out programs, and schoolwide programs designed to assist at-risk students. These programs were the subject of Borman and D’Agostino’s (1996) meta-analysis of the achievement effects of Title I programs, which synthesized the results from all federal evaluations conducted between 1965 and 1994. During those years the primary methods for upgrading the educational programs of at-risk children were specialized pullout programs and other targeted assistance rather than schoolwide programs and CSR models. Borman and D’Agostino estimated that the average effect size associated with those efforts was \(d = .11 \). The Title I evaluations, however, were almost exclusively based on the less-preferred one-group pre-post design and may overestimate the true Title I effect. Borman and D’Agostino did make an adjustment for regression to the mean effects for all Title I outcomes from one-group pre-post designs. The comparison to this benchmark is suggestive, but because the primary
studies and meta-analyses used different methodologies than those reported here, the comparison is imperfect.

A better comparison between CSR and conventional Title I programs may be drawn directly from the current study by estimating the CSR effect size from comparison-group studies in schools of 50% poverty or more. In most of those cases, the comparison schools have such high poverty rates that it is highly likely that they received federal Title I funds. In most cases, the schools implement Title I targeted or schoolwide programs and, in most cases, are not implementing other CSR models. These studies, therefore, provide a relatively good indication of the value-added effects of CSR, above and beyond the effect of traditional Title I programs. Across 346 such comparisons, the effect size, statistically adjusted for methodological characteristics, was $d = .12$. In other words, despite the fact that the vast majority of the control schools provided their students with extra resources and programs provided through Title I, the average CSR school still outperformed 55% of the Title I schools.

Are these benefits worth the seemingly high costs associated with implementing many of the CSR programs? On average, CSR programs have 1st-year costs of approximately $85,000, including both personnel and nonpersonnel expenditures, which include items such as training and materials. However, some developers have argued that schools with concentrations of poor children generally are able to garner sufficient resources to implement CSR models by simply reallocating existing supplemental funds and personnel from federal and state Title I programs, special education, desegregation settlements, and other sources (Slavin et al., 1994). In this way, many schools can afford even the high-priced CSR models by simply trading in their largely remedial approaches of the past, most often represented by federal and state Title I programs, for new designs that will enable them to implement research-based schoolwide reform programs. As Odden & Archibald (2000) argued, this method of “resource reallocation” can make implementations of CSR programs essentially “costless.” With a free-lunch participation rate of more than 65%, the average school in this meta-analysis would be a clear candidate for the reallocation approach.

There are, indeed, clear challenges in determining the relative costs and benefits of CSR models (Levin, 2002), but if one assumes that implementations in high-poverty schools generally have few additional costs, the benefits we have found are obviously well worth those modest investments. There is some research evidence to suggest that even if one does not assume that CSR implementations are “costless,” high-quality models are capable of yielding cost-benefit ratios that equal or exceed those found for other noted educational interventions, including the Tennessee Student/Teacher Achievement Ratio class-size reduction effort (Borman & Hewes, 2003). Furthermore, the analyses of Borman and Hewes revealed that a CSR model that focuses on early intervention and prevention actually may save schools the investments in the costly remedial practices of special education referrals and retentions in grade, which can alone offset the costs of implementing CSR models. Although this evidence is important, much more cost-effectiveness research is needed for a wider range of CSR models and for a broader array of educational interventions in general.

These conclusions regarding our analyses of the overall effects of the CSR models are valuable for understanding general outcomes. The overall effects, however,
are highly variable and should be viewed as averages found across a wide array of reform models and schools that were evaluated in a variety of ways. The overall effect size is a good indicator of the expected effects of CSR across a large number of schools. For instance, we can say with some confidence that policymakers may expect to find CSR effects of between $d = .09$ and $d = .15$ across similar studies of national or large districtwide samples of CSR schools. The effects for individual schools and the effects for individual reform models are likely to vary more widely. Our regression analysis and the specific effects of the 29 reform models reveal many reasons for the diverse findings, but a considerable amount of variability is left unexplained.

Explaining Differences in CSR Effects

Third, the heterogeneity of the CSR effect and the fact that few of the general reform components helped explain that variability suggest that the differences in the effectiveness of CSR are largely due to unmeasured program-specific and school-specific differences in implementation. Our regression analysis suggested that whether a CSR model, in general, requires the following components explains very little in terms of the achievement outcomes the school can expect: (a) ongoing staff professional development; (b) measurable goals and benchmarks for student learning; (c) a faculty vote to increase the likelihood of model acceptance and buy-in; and (d) the use of specific and innovative curricular materials and instructional practices designed to improve teaching and student learning. Similarly, the frequency with which the CSR models have successfully replicated their approaches in schools with diverse characteristics, the overall level of external technical support and assistance from the developer, and the general cost of the model do not help to explain a substantial amount of the variability in the CSR effect.

The one reform attribute that was a statistically significant predictor of effect size suggested that CSR models that require the active involvement of parents and the local community in school governance and improvement activities tend to achieve worse outcomes than models that do not require these activities. Taking strong actions to encourage parents to play significant roles in school governance and reform may help the school to grow as an institution, but these activities are not likely to have strong effects on achievement (Epstein, 1995). In contrast to school-based efforts aimed at helping families enrich their children’s learning opportunities outside school, which are far more likely to help individual children succeed with specific academic goals, the focus on parent involvement in school governance could sidetrack schools if the immediate priority is to improve achievement.

The general lack of explanatory power for the required reform characteristics suggests at least two possible interpretations. The first is that these characteristics are not important for promoting achievement in CSR schools and that, therefore, there is no relationship. The second interpretation is that knowing whether a CSR model required schools to implement a given component tells us little about whether the component actually was implemented. The latter interpretation suggests that some or all of the components may make a difference in terms of achievement but that school-specific and model-specific differences in the ways that the components are implemented explain considerably more than simply knowing whether the CSR developer required them. Consistent with research that has linked the success of school reform with (a) the level and quality of implementation (Berman &
McLaughlin, 1978; Crandall et al., 1982; Datnow, Borman, & Stringfield, 2000;
Stringfield et al., 1997), (b) the coordination and fit of a model to local circum-
cstances, and (c) the relationship between the CSR developer and the local school
and school district (Datnow & Stringfield, 2000), we contend that knowing more
about these largely unmeasured and unreported differences in implementation,
across both schools and CSR models, would also enrich our understanding of the
variability in the CSR effects.

Fourth, rather than the general programmatic components of the CSR models,
the methodological differences across the studies themselves tell us far more about
the effects that we can expect to find. Studies performed by the developer yielded
considerably stronger effects than studies performed by others. Does this suggest,
as Pogrow (2000) and others have implied, that the developers, to use a metaphor,
have their thumbs on the scale and are consciously manipulating the evaluation to
make the outcomes appear more favorable? This interpretation may have some
merit in a few cases, but is probably not a reasonable explanation of the overall
trend. Perhaps equally likely is that some third-party researchers may seek to
taint a model because of a personal grudge or professional dislike for its partic-
ular orientation. A more plausible source of developer bias is a variant of the so-
called “file-drawer” problem, which involves the tendency for researchers to
publish or otherwise disseminate their statistically significant findings but consign
their nonsignificant findings to a dusty filing cabinet. In this case, CSR developers
may selectively report the positive outcomes for their models and file away null
and negative findings.

Rather than overt bias or selective reporting, another explanation for the stronger
outcomes that we find for the developers’ studies is that when developers are more
actively involved in the study of their models, they also are more likely to be actively
involved in studying a high-quality implementation. After all, why would devel-
opers want to study half-hearted implementations of their models? Further, if
developers found that they were studying half-hearted implementations, they would
be in the best position of anyone to help the school improve the quality of its imple-
mentation. Many of the studies performed by developers may represent what Cron-
bach et al. (1980) termed the “superrealization” stage of program development.
Before broad field trials, interventions are often studied under optimal conditions as
assessments of what the program can accomplish at its best. The extent to which the
developers’ studies and results may generalize across broader implementations of
their CSR models, however, is of some concern.

The second key methodological finding was that studies using a one-group,
pretest-posttest design produced larger effect sizes than studies using control groups.
This is a clear methodological bias that should be addressed in future CSR research.
Ideally, evaluations should include randomized designs, which assign schools at ran-
dom to CSR and control conditions. As Borman (2003) pointed out, innovations
should not be forced on schools through random assignment. Schools should be part-
ners in the process of experimentation and should be supportive of the CSR model
under study. The only clear trade-off in such studies is that some schools will receive
the innovation now and others assigned to the control condition will receive the pro-
gram later, if it proves to be worthwhile and effective.

High-quality, quasi-experimental control-group designs are also desirable. When
comparing directly randomized experiments and quasi-experiments that were
designed to answer the same research questions, Lipsey and Wilson (1993) found that quasi-experiments are more highly variable in the results that they produce. As a result, although quasi-experiments may be less expensive than true experiments to conduct in the short run, they are less efficient in the long run because one needs many more of them to arrive at the same conclusion as can be reached through a randomized experiment. If randomized or matched control groups are not possible, even a comparison of the CSR school’s outcomes to district averages will provide some understanding of the value-added effects of the model.

Fifth, the models meeting the highest standard of evidence, Direct Instruction, the School Development Program, and Success for All, are the only CSR models to have clearly established, across varying contexts and varying study designs, that their effects are relatively robust and that the models, in general, can be expected to improve test scores. As the results in Table 5 demonstrate, the outcomes vary considerably by reform model. In most cases, however, the research base for each CSR model is still too small to generate reliable estimates of the models’ expected effects. For instance, it is certainly premature to conclude that the Audrey Cohen CSR model is likely to have a negative effect on achievement of $d = -0.13$ when replicated in schools. It is also too early to say that Integrated Thematic Instruction will likely have a relatively strong positive effect of $d = 0.24$ when implemented in other schools. In some cases, promising and highly promising models are emerging. Expeditionary Learning Outward Bound, Modern Red Schoolhouse, and Roots & Wings are all on the brink of establishing strong research bases. The models meeting the standard for the Strongest Evidence of Effectiveness category are distinguished from these models and others by the quantity and generalizability of their outcomes, the quality of the evidence (for instance, six of the seven randomized experiments and many high-quality quasi-experimental control-group studies have been conducted on the models achieving the highest standard of evidence), and the reliable effects on achievement.

Sixth, turning to contextual differences that we studied, the number of years of model implementation has very important implications for understanding CSR effects on achievement. The strong effects of CSR beginning after the 5th year of implementation may be explained in two ways: a potential cumulative impact of CSR or a self-selection artifact. Specifically, schools may be experiencing stronger effects as they continue implementing the models, or it may be that the schools experiencing particular success continue implementing the reforms while the schools not experiencing as much success drop them after the first few years. Both explanations seem to have some credence. Nonetheless, it is of considerable significance that the average school across all studies reviewed had implemented its CSR model for approximately 3 years. The typical study in this meta-analysis, therefore, may underestimate the true potential of CSR for affecting change in schools and for improving achievement.

We explored the significance of two other important contextual variables for understanding differences in achievement outcomes. The poverty level of the school in which the CSR model is implemented and the subject area that is tested for CSR effects do not explain large differences in the observed effects. All schools, regardless of poverty level, appear to benefit from CSR, and most subject areas tested revealed similar reform effects. Because federal funds for implementation of CSR models target high-poverty schools, this finding is of importance. It
suggests that the schools from the most challenging high-poverty contexts are benefiting just as much from CSR as are schools from more advantaged circumstances.

Conclusion

Historically, teaching has been fraught with what Lortie (1975) called “endemic uncertainties.” Moreover, Cook and Payne (2002) argued that the dominant perspectives on evaluation and improvement in education suggest that the context of each district, school, and classroom is so distinctive that only highly specific change strategies mapped to site-specific circumstances are likely to modify and improve their central functions. The continued growth and early success of CSR, which has advanced the application of replicable technologies that are based on scientific knowledge, provides a clear contrast to these long-standing theories and beliefs about schools, educational change, and evaluation.

The successful expansion of CSR shows that research-based models of educational improvement can be brought to scale across many schools and children from varying contexts. Some adaptations are sensitive to context—for instance, a Spanish version of the Success for All program, Éxito Para Todos, for English language learners—but the general models of school improvement also include well-founded and widely applicable instructional and organizational components that can be brought to scale across a large number of schools. The growing marketplace of CSR models and the proven replicability of many of the programs are important developments. To further advance CSR, however, policymakers and educators must demand clear evidence that the reforms will make a difference.

The models meeting our highest standard of evidence have been well researched and have shown that they are effective in improving achievement across reasonably diverse contexts. These models certainly deserve continued dissemination and federal support through CSRP and Title I. Moreover, all CSR models—even those achieving the highest standard of evidence—would benefit from more federal support for the formative and summative evaluations that are necessary to establish even more definitively what works, where, when, and how. Rather than approving programs on the basis of the 11 requirements (e.g., parent outreach program, clear goals, and benchmarks) that make a model “comprehensive,” we suggest that schools and policymakers pay even stronger attention to the models’ outputs.

Clear research requirements, ample funding for research and development, and a focus on results may support the transformation of educational research and practices in much the same way that they have helped transform medical research and treatment. Like the series of studies required in the Food and Drug Administration’s premarketing drug approval process, a similar set of studies might guide the research, development, and ultimate dissemination of educational programs (Borman, 2003). Once a CSR program has met a standard of evidence, then its implementation using federal funds, namely those from CSRP and Title I, should be approved. Before programs have accumulated such evidence, some concern should be shown for the ethics of supporting educational programs with unknown potentials. In medicine, Gilbert, McPeek, and Mosteller (1977) noted that only half of the new treatments subjected to randomized clinical trials actually showed benefits beyond the standard treatments that patients would have received. Without the benefit of high-quality evaluation, many widely disseminated educational practices may simply waste the time of teachers and students or, potentially, do harm.
At the same time, we do not suggest that schools and policymakers dismiss promising programs before knowing their potential effects. Instead, we challenge the developers and the educational research community to make a long-term commitment to research-proven educational reform and to establish a marketplace of scientifically based models capable of bringing comprehensive reform to the nation’s schools. As in Donald Campbell’s (1969) famous vision of the “experimenting society,” we must take an experimental approach to educational reform, an approach in which we continue to evaluate new programs designed to cure specific problems, we learn whether these programs make a difference, and we retain, imitate, modify, or discard the programs on the basis of their apparent effectiveness on the multiple imperfect criteria available.

APPENDIX

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated Schools</td>
<td>Developer: Henry Levin, Stanford University, now at Columbia University.</td>
</tr>
</tbody>
</table>

Primary goal: Bring children in at-risk situations at least to grade level by the end of sixth grade.

Main features:

1. Gifted-and-talented instruction for all students through “powerful learning.”
2. Participatory process for whole-school transformation.
3. Three guiding principles: unity of purpose, empowerment plus responsibility, and building strengths.

Primarily for Grades K–8. Training and training materials provided.

Costs:
The cost for the 1st year of implementation of Accelerated Schools is $28,129. First-year costs include an internal facilitator; training for the coach, principal, and internal facilitator (excluding travel); training materials; three copies of the *Accelerated Schools Resource Guide*; one visit by a project staff member; technical assistance by phone and e-mail; a year-end retreat; a subscription to the Accelerated Schools newsletter; and access to an electronic network of Accelerated Schools. Schools can bring these costs down by reassigning current staff to fill key positions, such as that of internal facilitator. Costs are derived from Herman et al. (1999).
Narrative summary of the research:
The research base for Accelerated Schools is fairly extensive and, for the most part, of good quality. In our search, we found 30 separate evaluations of Accelerated Schools. Of those 30 studies, 11 focused on student achievement as an outcome; the others focused on implementation, theory, or other student outcomes. Of the 11 studies, 8 provided sufficient information for inclusion in the meta-analysis. Of the 8 studies, 6 provided independent samples and data that were not duplicated in other studies and were included in the final analysis. Most evaluations have taken place in high-poverty or high-minority contexts in both urban and rural settings. Location data were available for 5 of the 6 studies. Those studies were conducted in Houston, TX; Sacramento, CA; Las Vegas, NV; Memphis, TN; and Lakewood, WA. Most of the researchers studying Accelerated Schools described their research methods and samples clearly, but outcomes were not always presented in sufficient detail. For instance, although means or effect sizes were provided, sample sizes and standard deviations sometimes were not reported. More than 90% of the outcome data required imputation of the sample size and more than 10% needed imputed standard deviations. The 6 studies included in the quantitative synthesis included 2 quasi-experimental matched control-group comparison designs, 1 pre-post design comparing Accelerated Schools to non-Accelerated Schools, and 3 one-group pre-post designs. Researchers other than the developer conducted 3 of the 6 studies and provided 88% of the outcome data, which was a higher rate than that found for the CSR literature as a whole. All studies presented outcomes in terms of mean percentile scores rather than as categorical or correlational outcomes.

Contact information:
Gene Chasin, Director
National Center for Accelerated Schools Project
University of Connecticut
2131 Hillside Road, Unit 3224
Storrs, CT 06269
Phone: 860-486-6330
Fax: 860-486-6348
E-mail: info@acceleratedschools.net
Website: http://www.acceleratedschools.net
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>America’s Choice</td>
<td>Developer: National Center on Education and the Economy.</td>
</tr>
<tr>
<td></td>
<td>Primary goal: Enable all students to reach internationally benchmarked standards.</td>
</tr>
<tr>
<td></td>
<td>Main features:</td>
</tr>
<tr>
<td></td>
<td>1. Learning is focused on getting all students to standards, varying only the time and</td>
</tr>
<tr>
<td></td>
<td>resources needed, using prevention, early intervention, and acceleration strategies.</td>
</tr>
<tr>
<td></td>
<td>2. There are five key design features: standards and assessments, student learning,</td>
</tr>
<tr>
<td></td>
<td>teacher training, community supports, and parent-public involvement.</td>
</tr>
<tr>
<td></td>
<td>For Grades K–12. Materials provided.</td>
</tr>
<tr>
<td></td>
<td>Costs:</td>
</tr>
<tr>
<td></td>
<td>The 1st-year cost for implementing America’s Choice is $197,943. This provides for</td>
</tr>
<tr>
<td></td>
<td>professional development, including estimated staff-release time, materials, and two</td>
</tr>
<tr>
<td></td>
<td>staff positions. Schools can lower the cost by reassigning current staff to fill key</td>
</tr>
<tr>
<td></td>
<td>positions, such as coach and coordinator. Costs are derived from Herman et al. (1999).</td>
</tr>
<tr>
<td></td>
<td>Narrative summary of the research:</td>
</tr>
<tr>
<td></td>
<td>In our search, we found 8 studies of America’s Choice schools, 3 of which contained</td>
</tr>
<tr>
<td></td>
<td>useful information on student achievement outcomes. The other studies focused on</td>
</tr>
<tr>
<td></td>
<td>implementation, theory, or other types of student outcomes. Of the 3 studies amenable to</td>
</tr>
<tr>
<td></td>
<td>meta-analysis, 2 provided independent samples and data that were not duplicated in other</td>
</tr>
<tr>
<td></td>
<td>studies and were included in the final analysis. America’s Choice is used in a collection</td>
</tr>
<tr>
<td></td>
<td>of urban schools around the country. One study provided multiyear test score data on 56</td>
</tr>
<tr>
<td></td>
<td>schools implementing the reform. The other study provided information on 15 schools.</td>
</tr>
<tr>
<td></td>
<td>The evaluations of America’s Choice were conducted in an array of locations, including</td>
</tr>
<tr>
<td></td>
<td>Kentucky; Baltimore; St. Louis, MO; Pittsburgh, PA; Sumter, SC; LaVilla, TX; Plainfield,</td>
</tr>
<tr>
<td></td>
<td>NJ; the state of New York; Hawaii; Jacksonville, FL; Los Angeles; San Gabriel, CA;</td>
</tr>
<tr>
<td></td>
<td>Chicago; and the District of Columbia. In this literature, much less focus has been</td>
</tr>
<tr>
<td></td>
<td>placed on the achievement outcomes for the schools. Half of the outcome data come from a</td>
</tr>
<tr>
<td></td>
<td>quasi-experimental matched control-group design.</td>
</tr>
</tbody>
</table>
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlas Communities</td>
<td></td>
</tr>
</tbody>
</table>

and the other half from a pre-post analysis of America’s Choice schools. All of the analyses used a cohort design. Of the studies that examined America’s Choice schools, the researchers did not always describe the school demographics clearly and did not provide information regarding the student sample sizes involved. Categorical outcomes were provided for more than half of the useful outcomes, more than one third of the outcome data came from group means, and the rest involved a mixture of those outcomes. The developer generated about half of the outcomes.

Contact information:
Judy Aaronson
National Center on Education and the Economy
One Thomas Circle, Suite 700
Washington, DC 20005
Phone: 202-783-3668
Fax: 202-783-3672
E-mail: schooldesign@ncee.org
Website: http://www.ncee.org

Developer: Coalition of Essential Schools, Education Development Center, Project Zero, School Development Program.

Primary goal: Develop Pre-K–12 pathways organized around a common framework to improve learning outcomes for all students.

Main features:
1. Pre-K–12 pathways.
2. Development of coherent K–12 educational programs for every student.
3. Authentic curriculum, instruction, and assessment.
4. Whole-faculty study groups.
5. School/pathway planning and management teams.

For Grades Pre-K–12. Materials are provided.

Costs:
The 1st-year cost of adopting ATLAS is $102,097. This amount covers technical assistance and professional development, including teacher release time (e.g., for weekly study groups); materials; and the salary for a pathway coordinator. Costs are derived from Herman et al. (1999).

(continued)
Narrative summary of the research:
The research base for ATLAS is not very extensive for the purposes of evaluating its impacts on student achievement. In our search, we found 7 studies of ATLAS. Of those, 5 focused on student achievement as an outcome and the other 2 focused on implementation, theory, or other student outcomes. Three of the 5 studies presented outcome data amenable to meta-analysis, but the others lacked basic information, including means or standard deviations for the outcomes. The data were based on evaluations of schools in Memphis, TN; Prince George’s County, MD; Norfolk, VA; and Philadelphia, PA. The quality of the 3 studies was good. The researchers included detailed information about their samples and the methodology of their evaluations, but sample sizes were provided in only 1 of the 3 studies. Two of the 3 studies incorporated a comparison group, with one study comparing two ATLAS schools to a group of demographically matched, non-reforming schools and the other comparing an ATLAS school’s outcomes to those for the district as a whole. Only 25% of all of the outcome data, however, were based on control-group comparisons. The third study, which used a one-group pre-post design, contributed 75% of the outcome data. Outcomes were presented in terms of effect sizes and the percentage passing a state-developed test.

Contact information:
Sharon Dash
Education Development Center
55 Chapel Street
Newton, MA 02158
Phone: 617-969-7100 or 617-618-2401
Fax: 617-969-3440
E-mail: atlas@edc.org
Website: http://www.edc.org/ATLAS/

Audrey Cohen College System of Education

Developer: Audrey Cohen College, New York.

Primary goal: Develop scholarship and leadership abilities using knowledge and skills to benefit students’ community and larger world.

Main features:
1. Student learning focused on complex and meaningful purposes.
Comprehensive School Reform and Achievement

APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Students use what they learn to reach specific goals.</td>
</tr>
<tr>
<td>3.</td>
<td>Curriculum focused on Constructive Actions (individual or group projects that serve the community).</td>
</tr>
<tr>
<td>4.</td>
<td>Classes structured around five dimensions (e.g., Self and Others, Values, etc.) that incorporate core subjects.</td>
</tr>
</tbody>
</table>

For Grades K–12. Materials and training provided.

Costs:
The cost for the 1st year of implementing Audrey Cohen is $167,731. This cost covers professional development, including staff release time for orientation; materials; a licensing fee; and additional staff. Schools can reduce this cost by approximately half by assigning a current staff member to serve as the Staff Resource Specialist. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
At the time of our search, the research base for Audrey Cohen was extremely limited; only 1 of the 3 studies that we found was amenable to meta-analysis. A great deal of available information on Audrey Cohen is qualitative and does not include quantitative achievement outcomes. In the 2 studies not included in the meta-analysis, when achievement data were reported there was not enough information available to calculate an effect size. In the 1 study in our meta-analysis, Audrey Cohen was implemented in a school where more than half of the students received free or reduced lunch prices. The study was performed by a researcher other than the developer, was longitudinal in design, and presented outcomes in terms of mean test scores. In this study, the Audrey Cohen school was matched to a non-reforming school based on demographics.

Contact information:
Ms. Janith Jordan, Vice President
Audrey Cohen College
75 Varick Street
New York, NY 10013-1919
Phone: 212-343-1234, ext. 3400
Fax: 212-343-8472
E-mail: janithj@aol.com
Website: http://www.audrey-cohen.edu

(continued)
Borman et al.

APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for Effective Schools</td>
<td>Developer: Beverly Bancroft, Larry Lezotte, and Barbara Taylor, at Michigan State University. Current service provider is Phi Delta Kappa International Center for Effective Schools.</td>
</tr>
<tr>
<td></td>
<td>Primary goal: Improve the academic achievement of all students.</td>
</tr>
<tr>
<td></td>
<td>Main features:</td>
</tr>
<tr>
<td></td>
<td>1. A continuous improvement process based on the principals that all children can and will learn, that increased academic achievement is the mark of effectiveness, that the unit of change is the individual school within the systemic arena, and that improvement plans must involve all stakeholders.</td>
</tr>
<tr>
<td></td>
<td>2. Increased teacher ownership in decision making about methods of instruction.</td>
</tr>
<tr>
<td></td>
<td>Costs:</td>
</tr>
<tr>
<td></td>
<td>The 1st-year cost to implement the Effective Schools model is $55,000. Specific costs depend on the need, size of the school or district, and level of involvement. A sliding cost schedule is available based on increased district involvement or participation by multiple schools, or both. Costs are derived from estimates provided by the developer.</td>
</tr>
<tr>
<td></td>
<td>Narrative summary of the research:</td>
</tr>
<tr>
<td></td>
<td>In our analyses, the research base for the Center for Effective Schools consisted of a single study. Other available studies of the Center for Effective Schools were theoretical in nature and did not provide analyses of achievement outcomes. There is also an extensive literature on “effective schools” that dates back to the writings and empirical work of Ronald Edmonds and others during the 1970s and 1980s. This research, however, does not evaluate a replicable effective schools intervention. It simply establishes correlations between various principles for effective schools and student achievement. The study of the Effective Schools reform model that was amenable to meta-analysis was a third-party</td>
</tr>
</tbody>
</table>
Child Development Project

Developer: Developmental Studies Center

Primary goal: Help schools become caring communities of learners that promote students’ intellectual, social, and ethical development.

Main features:

1. Literature-based reading and language arts curriculum.
2. Cooperative learning and developmental discipline.
3. Schoolwide community-building activities.
4. Restructuring to support teacher collaboration, planning, and reflection.

For Grades K–6. Materials provided.

Costs:

The cost for the 1st year of implementation of the Child Development Project is $160,675. This cost covers staff development, including release time for teachers for 4 to 6 days; on-site assistance; instructional, curricular, and implementation materials; and a full-time on-site coordinator. Costs are derived from estimates provided by the developer.

APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>evaluation that presented data across six schools in rural, suburban, and urban areas in which the program had been implemented for 3 years with at least 2 years between data points. The study did not present student sample sizes, and we had to impute that information. The evaluation used a one-group pre-post design and reported categorical outcome data for cohorts rather than for a longitudinal sample.</td>
</tr>
</tbody>
</table>

Contact information:

Center for Effective Schools
Phi Delta Kappa International
408 North Union
P.O. Box 789
Bloomington, IN 47402-0789
Phone: 800-766-1156
Fax: 812-339-0018
E-mail: effective.schools@pdkintl.org
Website: http://www.pdkintl.org
Narrative summary of the research:
Although there are 14 studies of the Child Development Project, only 4 focused on student achievement outcomes. The remaining studies focused on implementation, theory, or other student outcomes. Of the 4 studies, 2 presented information appropriate for meta-analysis. Both were conducted in a suburban district near San Francisco. The quality of the research was fair to good. In both studies, students in Child Development Project schools were compared with students in non-Child Development Project schools in the same district. No mention was made of equivalence on achievement of the two schools. The evaluations, both conducted by the developers, included detailed information about the sample and methodology. One of the studies presented outcomes in terms of mean scale scores and standard deviations. The other study presented t scores, allowing us to use the population standard deviation of 10 to compute effect sizes.

Contact information:
Denise Wood
Developmental Studies Center
2000 Embarcadero, Suite 305
Oakland, CA 94606
Phone: 510-533-0213
Fax: 510-464-3670
E-mail: dsc_information@devstu.org
Website: http://www.devstu.org

Coalition of Essential Schools
Developer: Ted Sizer, Brown University, Providence, RI. Now based in Oakland, CA.

Primary goal: Help create schools where students learn to use their minds well.

Main features:
1. Set of Ten Common Principles on which schools base their practice.
2. Personalized learning.
3. Mastery of a few essential subjects and skills.
4. Graduation by exhibition.
5. Sense of community.
6. Instruction and organization depend on how each school interprets the Common Principles (may involve interdisciplinary instruction, authentic projects, etc.).
APPENDIX (Continued)

Design Major Characteristics

For Grades K–12. No materials. Range of training options mostly provided by regional centers.

Costs:
A school with 500 students receiving $5,000 per student might spend as much as $250,000 per year. This cost would cover a full range of programs and services including regular on-site coaching, networking meetings, regional conferences, Trek summer institutes, “critical friends” school visits, workshops and seminars on curriculum/assessment/instruction, and evaluation of school progress. Costs are derived from estimates provided by the developer.

Narrative summary of the research:
The research base for Coalition of Essential Schools is extensive but provides relatively little information regarding the potential effects of the reform on student achievement. In our search, we found 34 evaluations, but only 7 focused on student achievement as an outcome. The rest focused on implementation, theory, or other student outcomes. Of the 7 studies, 3 were amenable to meta-analysis. The other 4 were not useful because they did not present the information needed to compute an effect size, such as means or standard deviations. The evaluations took place in moderate-to-high-poverty or moderate-to-high-minority contexts in both urban and rural settings. One study was conducted in Winchester, NH, and another in Miami, FL. The school’s location was not reported in the 3rd study. The quality of the research ranged from fair to good. In 2 of the 3 studies, researchers described their methods and samples clearly and presented their outcomes in good detail. In the remaining study, the student sample size had to be imputed. In 2 of the studies, standard deviations were not included, but population standard deviations for the percentile data and NCE scores were used as estimates. Standard deviations were imputed for more than 80% of the outcome data. Of the 3 useful studies, 1 involved a quasi-experimental matched-group comparison design and 2 relied on a one-group pre-post design. Thus only 17% of the outcomes were based on a control-group comparison. Researchers other than the developer conducted all 3 studies.

(continued)
Community for Learning

Developer: Margaret C. Wang, Temple University Center for Research in Human Development and Education.

Primary goal: Achieve social and academic success for students by linking schools with community institutions.

Main features:

1. Collaboration with homes, libraries, museums, and other places where students can learn.
2. Coordinated health and human services delivery.
3. Site-specific implementation design.
5. Teams of regular teachers and specialists work together in the classroom to provide individual and small-group instruction for regular and special students.
6. Individualized learning plans for all students.

For Grades K–12.

Costs:

The 1st-year cost for adopting Community for Learning is $163,564. This cost covers professional development and includes staff release time, technical assistance, and additional staff. Costs are derived from Herman et al. (1999).

Narrative summary of the research:

There is a fair amount of research on Community for Learning. In our search, we found 15 studies of Community for Learning or the Adaptive Learning Environment Model incorporated into Community for Learning. Of the 15 studies, 8 focused on student achievement as an outcome; the rest focused on implementation, theory, or other student out-
Comprehensive School Reform and Achievement

APPENDIX (Continued)

Design | Major Characteristics

Community Learning Centers

Developer: Wayne B. Jennings, Designs for Learning (St. Paul, Minnesota)

Primary goal: Dramatically increase the achievement of all learners.

Main features:

1. Powerful learning experiences in active learning environments.
2. Personal learning plan for each student.
3. Integrated social services.
4. Decentralized decision making.

For Grades Pre-K–Adult.

Costs:

A new school requires about $61,700 in the 1st year. This amount provides for consulting support and for ongoing membership and participation in and support from the CLC network of schools. It also pays for 30 days of consultation distributed over 10–15 visits. Costs are derived from estimates provided by the developer.

(continued)
Narrative summary of the research:
The research base for Community Learning Center (CLC) included a total of 10 studies. Of the 10 studies we found, only 5 provided data useful for calculating effect sizes. All of the 5 studies were presented in the same format, as longitudinal case studies of sites implementing CLC. All but 1 were produced in conjunction with the developer and the school or site where the reform was initiated. All of the evaluations were based on data gathered in St. Paul, MN, schools. Almost all of the outcome data were based on longitudinal analyses, which followed the same group of students over time. The general quality of the reporting was good. Most often, results were presented as mean test scores. In most cases, actual sample sizes and group standard deviations were given, and rarely did we have to impute that information.

Contact information:
Designs for Learning, Inc.
1021 Bandana Blvd. East, Suite 214
St. Paul, MN 55108
Phone: 651-645-0200
Fax: 651-645-0240
Website: http://www.designlearn.net/clc.html

Developer: BBN Corporation
Primary goal: Improve student achievement in core subjects.

Main features:
1. Organization of school into small learning communities (clusters).
2. Design-based assistance for comprehensive K–12 school reform.
3. Customized on-line or on-site training and personnel support.
5. Leadership processes for whole-school technology integration.
6. Emphasis on authentic problems and practical applications.

For Grades K–12. Print and on-line materials provided.
Costs:
The cost for the 1st year of implementation of Co-nect can be as high as $612,582. This amount provides for professional development, including staff release time; participation in the Critical Friends network; and an estimate for installing start-up technology in a school that has no hardware or software. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
There is a fair amount of research on the Co-nect model. In our search, we found 15 separate evaluations of Co-nect. Nine of the 15 studies focused on student achievement as an outcome; the rest focused on implementation, theory, or other student outcomes. Of the 9 studies, 7 were amenable to meta-analysis. The studies not used in the meta-analysis did not present the information needed to compute an effect size, such as means or standard deviations. Of the 7 studies amenable to meta-analysis, 5 provided independent samples and data that were not duplicated in other studies; those 5 were included in the final analysis. The evaluations of Co-nect mostly occurred in high-poverty or high-minority contexts in both urban and nonurban settings across the following major school districts: Memphis, TN; Cincinnati, OH; Miami, FL; Broward County, FL; Harford County, MD; San Antonio, TX; and Worcester, MA. The quality of the research on Co-nect was generally good. Most of the research methodology was described clearly and outcome data were presented in good detail. However, samples sizes were imputed for almost all of the outcomes (98%). Means or effect sizes were provided for most of the studies. Standard deviations were not included but, because we were able to apply population standard deviations to the often-reported percentile data, many could be estimated. Four of the 5 studies compared Co-nect schools with a comparison group. One study used a quasi-experimental matched-group comparison design. Another study compared Co-nect schools to demographically similar non-Co-nect schools, and 2 studies compared Co-nect schools to district means. Researchers other than the developer provided more than 90% of the outcome data, a much higher rate than for the CSR literature as a whole. Studies of Co-nect presented outcomes in terms of effect sizes, mean percentile scores, or percent passing on a state-developed test.

(continued)
Core Knowledge

Developer: E. D. Hirsch, Jr. (University of Virginia) and the Core Knowledge Foundation, Charlottesville, VA.

Primary goal: Help students establish a strong foundation of core knowledge for higher levels of learning.

Main features:
1. Sequential program of specific grade-by-grade topics for core subjects; the rest of the curriculum (approximately half) is left for schools to design.
2. Instructional methods (to teach core topics) are designed by individual teachers or schools.

For Grades K–8. Curriculum guidelines provided.
Training available but not required.

Costs:
The 1st-year implementation cost for Core Knowledge is $58,341. This cost covers professional development, including staff release time, materials, and a membership fee. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
The research base on the achievement effects of Core Knowledge is fairly extensive and of good quality. In our search, we found 13 separate studies of Core Knowledge that evaluated the program. Of those 13 studies, 8 focused on student achievement as an outcome; the rest focused on implementation, theory, or other student outcomes. Of the 8 studies related to student achievement, 6 were useful for computing an effect size. The evaluations of Core Knowledge occurred in various poverty and minority contexts in urban, suburban, and rural settings involving school districts in Maryland; Miami, FL; San Antonio, TX; Oklahoma; and Washington. Most of the researchers described their methods and samples clearly and presented data in good detail. Sample sizes were
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>included in 5 of the 6 studies, but more than 75% of the outcomes required imputation of standard deviations. All of the 6 useful studies compared Core Knowledge schools to a comparison group. Five of the 6 studies involved quasi-experimental matched-group comparison designs, and the other study compared the Core Knowledge school to a district average. Researchers other than the developer conducted all of the studies used in the meta-analysis. Most studies of Core Knowledge presented outcomes in terms of NCE scores, standardized scores, actual effect sizes, or the percentage of students passing a state assessment, rather than as categorical or correlational outcomes.</td>
<td></td>
</tr>
</tbody>
</table>

Contact information:
Yolanda VanNess
Core Knowledge Foundation
801 East High Street
Charlottesville, VA 22902
Phone: 434-977-7550 or 800-238-3233, ext. 237
Fax: 434-977-0021
E-mail: yvancore@aol.com
Website: http://www.coreknowledge.org

Different Ways of Knowing

Developer: Galef Institute

Primary goal: Raise students’ academic achievements and improve their attitudes toward their school.

Main features:
1. An interdisciplinary arts-infused curriculum.
2. Development of multiple intelligences.
3. Promotion of collaborative learning and higher-order thinking.
4. Increase in independent research and engaged learning time.

For Grades K–8. Materials are provided.

Costs:
Costs are based on the partnership-building plan created with a given district or cluster of schools. The average cost is $87,512 for the 1st year of the adoption of the Different Ways of Knowing. This cost covers professional development, including staff release time, and other services provided by the developer. Costs are derived from Herman et al. (1999).

(continued)
Narrative summary of the research:
The research base for Different Ways of Knowing (DwoK) is fairly limited, including only 2 evaluations of the reform within three states: Kentucky, California (San Francisco and Los Angeles), and Massachusetts (Boston and Cambridge). The reform has been implemented in urban areas in many schools serving minority students. In a few cases, we were sent data tables or an executive or summary report without any data. That information, however, did not provide clear information that could be used to calculate effect sizes. Of the 2 studies included in our analysis, 1 used a one-group pre-post design and the other employed a district-based comparison. The developer conducted 1 of the 2 evaluations. The research was of good quality. Research methods and samples were described clearly and outcomes were provided in good detail, including group means, sample sizes, and standard deviations. All of the evaluations presented outcomes in terms of mean test scores.

Contact information:
Lin Shakir
The Galef Institute
5670 Wilshire Boulevard, 20th Floor
Los Angeles, CA 90036
Phone: 323-525-0042
Fax: 323-525-0408
E-mail: lshakir@galef.org
Website: http://www.dwoknet.galef.org/

Direct Instruction

Developer: Siegfried Engelmann (University of Oregon).

Primary goal: Improve academic performance so that by fifth grade, students are at least a year and a half beyond grade level.

Main features:

1. Field-tested reading, language arts, and math curricula.
2. Highly scripted lesson strategies.
3. Extensive writing.
4. Highly interactive lessons presented to small groups of students, flexible grouping students by performance level, frequent assessment of student progress, no pull-out programs.
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For Grades K–6. Detailed materials provide by publisher.</td>
</tr>
</tbody>
</table>

Costs:
The cost of implementation of Direct Instruction in the 1st year is $254,201. This amount covers professional development, including staff release time; materials; and additional staff. However, schools can decrease the amount by reassigning a current staff member to serve as the facilitator. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
The research base for Direct Instruction (DI) is very extensive and of very good quality. In our search, we found 48 separate studies of DI that presented results amenable to meta-analysis. About half of the studies deemed not useful for our purposes were deemed so simply because they were reviews or re-analyses of previous research, the other half because the research was presented without sufficient detail to calculate an effect size. DI evaluations occurred mostly in high-poverty or high-minority contexts, both urban and rural, but occasionally were conducted in less disadvantaged sites. DI evaluations have been conducted in a number of states throughout the United States, including Texas, Florida, Illinois, and California. Most of the researchers described their research methods and samples clearly and presented outcomes in excellent detail, including group means, standard deviations, and sample sizes. Of the 48 studies in our analysis, most involved district comparisons or quasi-experimental matched-group comparison designs. A small number relied on the less preferred one-group pre-post design. Two studies used an experimental design with random assignment to treatment and control groups. The developer generated fewer than 10% of the outcomes. About two-thirds of the studies of DI presented outcomes in terms of mean test scores or actual effect sizes, and almost a third presented outcomes as categorical, with a small fraction presented as correlational. Most studies also presented the actual sample sizes and group standard deviations; only occasionally did we have to impute a sample size or standard deviation.

(continued)
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edison Schools</td>
<td>Developer: Chris Whittle and the Edison Project Design Team.</td>
</tr>
</tbody>
</table>

Primary goal: Create innovative schools that operate at current public school spending levels and provide all students with an academically excellent education rooted in democratic values.

Main features:

1. Contracts with school districts or charter schools.
2. Schools within schools.
4. Instruction tailored to meet individual students’ needs.
5. Emphasis on computer technology.
6. Schools use Success for All reading program and the University of Chicago math program.

For Grades K–12. Broad ranges of curricular materials are provided as part of the design.

Costs:
The school incurs no additional costs. Instead, the school district pays Edison Schools the same amount per pupil as it spends on other pupils in the district. For example, if the average per-pupil operating revenue in a district is $5,000, Edison receives $5,000 for each student who chooses to enroll in its schools (plus whatever Title I, special education, and other funding would normally flow to the school). The developer provided this information.
Comprehensive School Reform and Achievement

APPENDIX (Continued)

Design Major Characteristics

Narrative summary of the research:
The research base is somewhat extensive, in large part because of the annual reports produced by the developer that provide data for a large number of Edison schools. In our search, we found 13 separate evaluations of Edison Schools. Of those, 8 focused on student achievement as an outcome, and the rest focused on implementation, theory, or other student outcomes. Five of the 8 evaluations provided independent samples and data that were not duplicated in other studies; those 5 were included in the final analysis. The evaluations of Edison Schools occurred mostly in moderate-to-high-poverty or moderate-to-high-minority contexts in urban, suburban, and rural settings across the United States. Most of the researchers described their research methods and samples clearly and presented outcome data in good detail. Within each study, multiple methodologies were used. For the clear majority of outcome data we had to impute standard deviations and sample sizes. Most of outcomes presented in the developer’s annual reports examined cohort-level data. Only a few studies followed a true longitudinal sample, namely, the research of Miron and Applegate. Seventy-five percent of the outcome data were based on a one-group pre-post design. A quasi-experimental matched-group comparison design, a comparison of Edison Schools to non-Edison Schools using a pre-post design, pre-post comparisons with demographically similar neighborhood schools, and pre-post comparisons to district averages were used in the remaining 25% of the outcomes. Most of the outcome data (69%) were provided by the developer, as the Edison annual reports presented outcomes on almost every Edison school. Outcomes were presented in terms of effect sizes, mean percentile scores, or percentages of students passing a state-developed test.

Contact information:
Edison Schools
5211 Fifth Avenue, 15th Floor
New York, NY 10175
Phone: 212-419-1600
Website: http://www.edisonschools.com

(continued)
Design Major Characteristics

<table>
<thead>
<tr>
<th>Developer: Expeditionary Learning Outward Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary goal: Foster high achievement for all students.</td>
</tr>
<tr>
<td>Main features:</td>
</tr>
<tr>
<td>1. Challenging learning expeditions that involve authentic projects and fieldwork.</td>
</tr>
<tr>
<td>2. High expectations for all students.</td>
</tr>
<tr>
<td>3. Shared decision making.</td>
</tr>
<tr>
<td>4. Regular review of student achievement and level of implementation.</td>
</tr>
<tr>
<td>For Grades K–12. Materials provided.</td>
</tr>
<tr>
<td>Costs:</td>
</tr>
<tr>
<td>The cost of implementing Expeditionary Learning varies with the size of the school and the number of participating schools in the district. In the 1st year, a school with 25 faculty members and 500 students would pay $84,386 ($3,375 per faculty member). Costs are higher if there are fewer than three or four participating schools in the district. Costs are derived from Herman et al. (1999).</td>
</tr>
<tr>
<td>Narrative summary of the research:</td>
</tr>
<tr>
<td>In our search, we found 9 separate studies of Expeditionary Learning Outward Bound (ELOB) that evaluated the program. Of the 9 studies, 6 focused on student achievement as an outcome; the rest focused on implementation, theory, or other student outcomes. ELOB research has been conducted in several cities, including Portland, ME; Boston; Dubuque, IA; Decatur, GA; Denver, CO; New York City; Memphis, TN; Cincinnati, OH; and San Antonio, TX. The developer conducted only 1 study. Various methodologies were employed. One study used a quasi-experimental matched-group comparison design, 1 study used a district comparison, and 4 studies employed a one-group pre-post design. Four of the studies were true longitudinal designs and 1 employed a cohort design. The other study used both cohort and longitudinal data. Almost one third of the outcomes involved a cohort analysis.</td>
</tr>
</tbody>
</table>
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Schools That Work</td>
<td>About three fourths of the data were presented in terms of mean test scores, and one fourth were categorical outcomes. In many studies, actual sample sizes and standard deviations were not presented. For nearly half of the cases we had to impute sample sizes, and more than 60% of the time we had to impute standard deviations.</td>
</tr>
</tbody>
</table>

Contact information:
Greg Farrell, President
Expeditionary Learning Outward Bound
100 Mystery Point Road
Garrison, NY 10524
Phone: 845-424-4000
Fax: 845-424-4280
E-mail: greg_farrell@elob.org
Website: http://www.elob.org

Developer: Southern Regional Education Board in Atlanta, Georgia.

Primary goal: Increase the achievement of career-bound students by blending the content of traditional college preparatory studies with quality vocational and technical studies.

Main features:
1. Upgraded academic core.
2. Common planning time for teachers to integrate instruction.

For Grades 9–12. Specific materials are suggested to guide schools in making changes but not provided.

Costs:
The 1st-year cost for adopting High Schools That Work is $50,007. This amount covers the average cost for professional development, technical assistance, assessment, materials, and an estimated amount that schools should set aside for expenses, such as teacher release time. Costs are derived from Herman et al. (1999).
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Narrative summary of the research:</td>
</tr>
<tr>
<td></td>
<td>High Schools That Work (HSTW) has an extensive research base, with 45 evaluations of student achievement that were included in our synthesis. The developer, however, conducted all but 1 of the studies, and nearly all have used the less preferred one-group pre-post design. The evaluation literature includes studies conducted in 54 schools in Virginia, 119 schools in West Virginia, 112 schools in Georgia, 100 schools in Kentucky, 28 schools in Maryland, 33 schools in South Carolina, 70 schools in North Carolina, 55 schools in Tennessee, 40 schools in Oklahoma, 74 schools in Louisiana, 40 schools in Florida, 56 schools in Alabama, 20 schools in Arkansas, 7 schools in Delaware, 12 schools in Hawaii, 19 schools in Indiana, 9 schools in Kansas, 25 schools in Massachusetts, 4 schools in Ohio, 27 schools in Pennsylvania, and 53 schools in Texas. Most of the studies employed the same type of analysis: a cohort design that tracked the progress of HSTW schools by examining the outcomes of successive senior classes from year to year. The studies that were not amenable to meta-analysis lacked standard deviations or other information necessary to calculate an effect size. In some cases, only posttest data were reported, with no comparison groups and no pretests or other reference from which to estimate the value-added effect of the model. For most of the studies it was necessary to impute a sample size. Almost half of the outcomes were categorical, and almost half involved mean test scores.</td>
</tr>
</tbody>
</table>

	Contact information:
	Scott Warren, Director of CSRD
	Southern Regional Education Board
	592 Tenth Street, N.W.
	Atlanta, GA 30318
	Phone: 404-875-9211
	Fax: 404-872-1477
	E-mail: scott.warren@sreb.org
	Website: http://www.sreb.org

High/Scope Primary Grades Approach to Education

Developer: David P. Weikart.

Primary goal: Provide children with effective, developmentally sound learning experiences in all curriculum areas and do so with sensitivity to their backgrounds, strengths, and interests.
Main features:

1. Small-group instruction, active learning, learning centers, observational and portfolio assessment.
3. Technology integration.

For Grades K–3.

Costs:
The 1st-year cost for adopting High/Scope is $135,435. This is based on an estimate of 1 year of professional development, including estimated teacher release time, materials, and consultant travel expenses. Fees that the schools pay the developer are negotiated on an individual basis and are influenced by the number of classrooms in a school and travel costs for High/Scope trainers. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
Information on High/Scope is often associated with the Perry Preschool Project, but some information is available on the program’s effects on K–3 students. High/Scope is one of several models, along with Direct Instruction, that have a very long evaluation history. The early data on High/Scope were part of the 1970s Follow Through evaluation of 10 school designs. Only 1 study provided data from the 1990s. High/Scope has been evaluated in schools in Denver; Chicago; New York; Seattle; Leflore County, MS; Central Ozark, MO; Oskaloosa County, FL; and Richmond, VA. More than half of the outcome data are from matched comparison studies and one third used comparison groups and covariate-adjusted outcomes. The developer conducted 2 of the 4 studies that are included in our meta-analysis. One of the studies involved a cohort design and 3 used a true longitudinal design. For data from one of the studies, the standard deviation had to be imputed. All outcome data were presented as mean test scores, and no categorical or correlational outcomes were provided.
Contact information:
Gavin Haque
High/Scope Education Research
600 North River Street
Ypsilanti, MI 48198
Phone: 734-485-2000
Fax: 734-485-0704
E-mail: gavinh@highscope.org
Website: http://www.highscope.org

Integrated Thematic Instruction
Developer: Susan Kovalik.

Primary goal: Apply current brain research to teaching strategies and curriculum to develop responsible citizens.

Main features:
1. Reform based on current brain research and use of multiple intelligences.
2. Yearlong theme to integrate curriculum.
3. Enriched school and classroom environment.
4. Lifelong guidelines and lifeskills.
5. Learning tied to locations and issues in the community.

For Grades K–12. A full line of books and materials are available for purchase.

Costs:
The 1st-year cost for implementing Integrated Thematic Instruction is $61,235. This cost provides for a start-up package, on-site coaching, initial training for three associates, seminars for three associates, and on-site training. Costs are derived from estimates provided by the developer.

Narrative summary of the research:
Integrated Thematic Instruction (ITI) has a research base that is focused mostly on the implementation of the reform and the goals behind the program. We did, however, find 2 useful studies with achievement data. One study employed a matched-group quasi-experimental design, and the other involved a single-group pre-post comparison. Researchers other than the developer conducted the evaluations of ITI, one of which was a doctoral dissertation. All of the presented information was longitudinal in design. One of the studies did not
MicroSociety®

Major Characteristics

<table>
<thead>
<tr>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Characteristics</td>
</tr>
<tr>
<td>include standard deviations, and those data were imputed. All of the data were presented as mean test scores. The data for ITI were derived from schools in Lebanon, IN, and Texas.</td>
</tr>
</tbody>
</table>

Contact information:

Jane McGeehan
Susan Kovalik & Associates, Inc.
17051 S.E. 272nd Street, Suite 17
Covington, WA 98042
Phone: 253-631-4400
Fax: 253-631-7500
E-mail: skovalik@oz.net
Website: http://www.kovalik.com

Developer: George H. Richmond.

Primary goal: Prepare students to become active, caring, responsible citizens by multiplying opportunities for success.

Main features:

1. Allows children to create a miniature society in the school.
2. Adapts instruction to real-world experience.
3. Incorporates democratic ideals and entrepreneurship in a culturally sensitive community.
4. Helps children develop positive attitudes toward learning, school, themselves, and their community.

For Grades K–8. Training materials are provided.

Costs:

The start-up cost for the 1st year of implementing Microsociety is $67,450. This amount covers travel for three to the annual conference, supplies for agencies and ventures, and the basic cost for 20–40 teachers at Level II. Costs are derived from Herman et al. (1999).
Narrative summary of the research:
In our search, we found 9 separate studies of Microsociety that evaluated the program. Of those studies, 3 focused on student achievement as an outcome; the rest focused on implementation, theory, or other student outcomes. Microsociety schools exist in urban, suburban, and rural settings in schools in El Paso, TX; Detroit, MI; Monroe, Silverdale, Tacoma, Port Orchard, and Edmonds, WA; Jacksonville, FL (three schools); Winterville and Athens, GA; Glendale, AZ; and Phoenix, AZ (two schools); Boaz, AL; and Las Vegas, NV. The developer conducted all 3 of the studies that were amenable to meta-analysis. Two of these were reports stating that the school had made national Blue Ribbon status. (The Blue Ribbon program identifies and recognizes schools that are models of excellence and equity, that demonstrate a strong commitment to educational excellence for all students, and that achieve high academic standards or significant academic improvement over 5 years.) The 3rd study provided data for Microsociety schools across several states. Most outcome data were based on a one-group pre-post design, and in half of the cases a cohort design was used to measure achievement gains. Imputation for missing standard deviations was not often necessary, but one study that provided about half of the outcome data did not include sample sizes and required imputation. A little more than one third of the results were based on categorical outcomes and the remaining results involved mean test scores.

Contact information:
Katherine Primus, Director of Business Development
MicroSociety
13 South Third Street, Suite 500
Philadelphia, PA 19106
Phone: 215-922-4006
Fax: 215-922-3303
E-mail: kprimus@microsociety.com
Website: http://www.microsociety.org

Developer: The Modern Red Schoolhouse Institute, Nashville.

Primary goal: To combine the rigor and values of the little red schoolhouse of yesteryear with the latest classroom innovations.
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
</table>

Main features:

1. Challenging curriculum (Core Knowledge recommended in K–6).
2. High standards for all students.
3. Emphasis on character.
4. Integral role of technology.
5. Individual education compact for each student.

For Grades K–12. Some materials and training provided.

Costs:
The cost for the 1st year of implementing Modern Red Schoolhouse is $223,988. The cost includes an average fee for training and technical assistance, an estimated cost for technology, and estimated release time for training (assuming that all teachers participate in 5 days of training and groups of eight teachers participate in 25 days of training). Costs are derived from Herman et al. (1999).

Narrative summary of the research:
Six studies amenable to meta-analysis exist concerning the achievement effects of Modern Red Schoolhouse (MRS). MRS has been evaluated in Title I schools with large minority populations in New York City; Gallup, NM; San Antonio, TX; Miami, FL; Memphis, TN; Hagerstown, MD; Pompano Beach, CA; and Jackson, MS. Three fourths of the outcome data relied on the school district as the comparison group; a small percentage of the research used a one-group pre-post design; and an even smaller percentage of outcome data were generated from matched-comparison group studies. Three fourths of the studies used a cohort design. Three of the 6 useful studies were produced by the developer, meaning that about half of the outcome data were produced by the developer and the other half were generated by other researchers. Imputation of sample size was necessary in 3 of the 6 studies, comprising three fourths of the available outcome data for MRS, but no standard deviations required imputation. In most cases, standard deviations were not required for computation of effect sizes because more than 90% of the results were based on categorical data and only 9% were based on means and standard deviations.

(continued)
Montessori

Developer: Maria Montessori

Primary goal: Help each child reach his or her fullest potential.

Main features:

1. Multi-age groups.
2. Self-correcting, manipulative materials.
3. Open time, free choice of activity, and learning driven by child’s interests.
4. Work matched to child’s developmental level.
5. Interdisciplinary curriculum.

For Grades Pre-K–8. Specialized materials replace textbooks, workbooks, and photocopied materials.

Costs:
The start-up cost for becoming a Montessori school is $939,723. This amount provides a school with key books (in place of textbooks), materials, furniture, training, and paraprofessionals for 18 classrooms. Costs are derived from estimates provided by the developer.

Narrative summary of the research:
Although the research base for the Montessori preschool model is fairly extensive, the amount of research evaluating the effectiveness of the Montessori model in elementary schools is somewhat sparse. In our search, we found 19 separate evaluations of the Montessori school reform model. Only 4 of the 19 studies focused on student achievement as an outcome; the rest focused on implementation, theory, or other student outcomes. Of the 4 studies, 2 were found to be useful for computing an effect size. One involved Cincinnati, OH, schools, and the other took place in a North Texas district. Researchers studying the Montessori reform model described their research methods and samples.
clearly and their outcomes in adequate detail. One study looked at all alternative schools in a district, of which Montessori was one. In that study, Montessori schools and the other alternative schools were compared with all nonalternative schools in the district. In the second study, K–3 Montessori students were compared with students matched on gender, race, and grade from a traditional elementary school. Sample sizes were given in both studies. Race or ethnicity information was reported for the schools in 1 of the 2 studies. Both studies presented outcomes in terms of NCE scores. Effect sizes were computed from the NCE population standard deviation of 21.06 or from the results of an analysis of covariance. Researchers other than the developer conducted both of the studies.

Contact information:
David Kahn
Montessori Public School Consortium and North American Montessori Teachers’ Association (NAMTA)
13693 Butternut Road
Burton, OH 44021
Phone: 440-834-4011
Fax: 440-834-4016
E-mail: davidjkahn@aol.com
Websites: http://www.montessori-namts.org (NAMTA)
http://www.amshg.org/ (American Montessori Society)
http://www.ami.edu (Association Montessori Internationale)

Onward to Excellence
Developer: Northwest Regional Educational Laboratory (NWREL).

Primary goal: Help schools build capacity through shared leadership for continuous improvement.

Main features:
1. School leadership teams.
2. Two-year improvement process, curriculum mapping, and school profiles (data on student achievement).
3. Effective practices research.

For Grades K–12. Materials are provided.
APPENDIX (Continued)

Design Major Characteristics

Costs:
The 1st-year cost for implementing Onward to Excellence is $75,010. This cost covers half of the 2-year professional development fee, estimated expenses for staff release time, travel for the developer staff, and a quarter-time facilitator’s salary. The 1st-year cost can be reduced if a current staff member is reassigned to the role of quarter-time facilitator. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
The research base for Onward to Excellence (OTE) and Onward to Excellence II is composed of 4 developer-compiled case studies. The OTE evaluations have included schools in urban, rural, and suburban areas in Alaska, Colorado, Hawaii, Idaho, Mississippi, Montana, Oregon, Washington, and Wyoming. The research presented on OTE is based solely on the one-group pre-post design. Two of the studies used a cohort design and 2 used a true longitudinal design. Sample means and standard deviations had to be imputed for all of the studies because that information was not provided in the reports. Nearly one third of the outcomes were based on categorical outcomes; the rest were based on mean test scores.

Contact information:
Robert E. Blum, Director
School Improvement Program
Northwest Regional Educational Laboratory
101 S.W. Main Street, Suite 500
Portland, Oregon 97204
Phone: 503-275-9615
Fax: 503-275-9621
E-mail: blumb@nwrel.org
Website: http://www.nwrel.org/scpd/ote

Paideia

Developer: Mortimer Adler.

Primary goal: Prepare students to be lifelong learners, to earn a living, and to be citizens of this country and of the world.

Main features:

a. Socratic seminars.
b. Didactic instruction.
c. One-on-one coaching.

For Grades K–12.
Costs:
The 1st-year cost to implement Paideia is $152,104. The cost covers professional development, including teacher release time, and the salary of a full-time facilitator. The 1st-year cost can be reduced if a current staff member is reassigned to the role of full-time facilitator. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
The Paideia research base is not extensive, but it is of good quality. Paideia has been evaluated in Cincinnati, OH; Chicago; Memphis, TN; and school districts in North Carolina. The 4 studies that provided quantitative reports of student achievement outcomes were performed by researchers other than the developer. Two of the studies used a one-group pre-post design. One study, however, a doctoral dissertation by Tarkington, employed a true randomized design. Other outcome data were derived from a comparison with a matched control group and a comparison of Paideia outcomes with those for the district as a whole. Almost all Paideia outcomes were from longitudinal designs. In all cases, sample sizes were provided; in 80% of the cases, standard deviations were available. The remaining 20% of the outcomes required imputed standard deviations for the effect size calculations. All outcomes were based on mean test scores.

Contact information:
Terry Roberts
National Paideia Center
University of North Carolina, Greensboro
P.O. Box 26171
Greensboro, NC 27402
Phone: 336-334-3831 or 336-334-3729
Fax: 336-334-3739
E-mail: tbrober3@uncg.edu
Website: http://www.paideia.org

Roots & Wings

Developer: Robert Slavin, Nancy Madden, and a team of developers from Johns Hopkins University. Now based at the Success for All Foundation in Baltimore.

Primary goal: To ensure that all children learn to read, acquire basic skills in other subject areas, and build problem-solving and critical thinking skills.
Main features:

1. Research-based, prescribed curriculum in the areas of literacy, math, and social and scientific problem solving.
2. Integrated science and social studies program.
3. One-to-one tutoring, family support team, cooperative learning, on-site facilitator, and building advisory team.

For Grades K–6. Mostly all materials provided. Training required.

Costs:
The 1st-year cost for implementing Roots & Wings is $281,288. The cost includes professional development, teacher release time, materials, and salaries for a full-time facilitator and three tutors. However, schools can reduce the cost by reassigning current staff to serve as the full-time facilitator or as reading tutors, or both. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
The research base for Roots & Wings (R&W) is modest and of moderate quality. In our search, we found 6 separate studies of R&W that presented data amenable to meta-analysis. Most of the studies deemed not useful for our purposes were deemed so simply because they were reviews of previous research, not because the research was presented poorly. Most R&W evaluations occurred in high-poverty or high-minority contexts, both urban and rural, but occasionally were conducted in less disadvantaged areas and included bilingual students and English language learners. R&W evaluations have been conducted in several cities and states throughout the United States, including Memphis, Cincinnati, California, and Texas. Most of the researchers studying R&W described their research methods and samples clearly and generally presented outcomes in sufficient detail, although frequently we did have to impute sample size or standard deviation to calculate an effect size. Some of the R&W studies used a quasi-experimental matched-sample design, but most involved district comparisons and a small handful relied on the less preferred one-group pre-post design. About two
<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>thirds of the outcome data were generated by the developer, a somewhat higher rate than for the CSR literature as a whole. Most studies of R&W presented outcomes in terms of mean test scores or actual effect sizes, rather than as categorical or correlational outcomes.</td>
<td></td>
</tr>
</tbody>
</table>

Contact information:
Roots & Wings
Success For All Foundation
200 West Towsontown Boulevard
Baltimore, MD 21204
Phone: 800-548-4998
Fax: 410-324-4444
E-mail: sfainfo@successforall.net
Website: http://www.successforall.net

School Development Program

Developer: James Comer, Yale University, New Haven, CT.

Primary goal: Mobilize entire community of adult caretakers to support students’ holistic development to bring about academic success.

Main features:

1. Three teams (school planning and management team, student and staff support team, parent team).
2. Three operations (comprehensive school plan, staff development plan, monitoring and assessment).
3. Three guiding principles (no-fault, consensus, collaboration).

For Grades K–12. Training and manual provided with teaching materials.

Costs:
The School Development Program contracts with districts for the participation of four or more schools. The cost for one school for the 1st year of implementation is $46,881. The cost includes workshops for five teachers and the principal, including release time, technical assistance, a fee to the developer, and the salary of a quarter-time facilitator. Schools can reduce the cost by reassigning a current staff member to serve as the facilitator. Costs are derived from Herman et al. (1999).
Narrative summary of the research:
The research base for the School Development Program (SDP) is extensive and of very good quality, in general. In our search, we found 38 separate studies that evaluated the SDP. Of those, 18 focused on student achievement as an outcome; the rest focused on implementation, theory, or other student outcomes. Of the 18 studies, 10 were useful for evaluating the effects of the reform on student achievement. Most of the studies not amenable to meta-analysis did not present the information needed to compute an effect size, such as means or standard deviations. Most of the evaluations occurred in high-poverty or high-minority contexts, generally in urban settings. For the 10 studies in our meta-analysis that reported location data, the evaluations were conducted in the following urban areas: Detroit, MI; Benton Harbor, MI; Prince George’s County, MD; Miami, FL; and New York City. One other study stated its locations as East Coast, West Coast, and Southeast Coast. The quality of the research ranged from good to very good. Most of the researchers described their research methods and samples clearly; however, not all outcomes were presented with good detail. In some studies, multiple methodologies were used. Means or effect sizes were provided for most of the studies. However, sample sizes and standard deviations were imputed for 60% of the outcomes used in the meta-analysis. For our analyses, 72% of the data were based on quasi-experimental matched-group designs. The rest of the data were based on one-group pre-post designs. Researchers other than the developer provided a little more than a third of the outcome data, a somewhat lower rate than for the CSR literature as a whole. Studies presented outcomes in terms of effect sizes, mean percentile scores, raw scores, and percentages of students passing a state-developed test.
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success for All</td>
<td>Developer: Robert Slavin, Nancy Madden, and a team of developers from Johns Hopkins University. Now based at the Success for All Foundation in Baltimore.</td>
</tr>
<tr>
<td></td>
<td>Primary goal: Guarantee that every child will learn to read.</td>
</tr>
<tr>
<td></td>
<td>Main features:</td>
</tr>
<tr>
<td></td>
<td>1. Research-based, prescribed curriculum in the areas of reading, writing, and language arts.</td>
</tr>
<tr>
<td></td>
<td>2. One-to-one tutoring, family support team, cooperative learning, on-site facilitator, and building advisory team.</td>
</tr>
<tr>
<td></td>
<td>For Grades Pre-K–8. Usually, all materials are provided. Training required.</td>
</tr>
<tr>
<td></td>
<td>Costs:</td>
</tr>
<tr>
<td></td>
<td>The 1st-year cost for implementing Success for All is the same as the cost for Roots & Wings: $281,288. The cost includes professional development, teacher release time, materials, and salaries for a full-time facilitator and an average of three tutors. However, schools can reduce the cost by reassigning current staff to serve as the full-time facilitator or as reading tutors, or both. Costs are derived from Herman et al. (1999).</td>
</tr>
</tbody>
</table>

Contact information:
Beverly Crowther, Research Associate
School Development Program
53 College Street
New Haven, CT 06510
Phone: 203-737-4008
Fax: 203-737-4001
E-mail: beverly.crowther@yale.edu
Website: http://www.schooldevelopmentprogram.org
Narrative summary of the research:
The research base for Success for All (SFA) is very extensive and of very good quality. In our search, we found 42 separate studies that presented data amenable to meta-analysis. Most of the studies that were not useful for our purposes were deemed so simply because they contained samples or data that were already included in other research, not because the research was presented poorly. Most of the evaluations occurred in high-poverty or high-minority contexts, both urban and rural, but some have also been conducted in less disadvantaged areas and have included bilingual students and English language learners. SFA evaluations have been conducted in many cities and states throughout the United States. Baltimore, Philadelphia, Memphis, California, and Texas are five of the most heavily researched areas. Most of the researchers studying SFA described their research methods and samples clearly, and presented outcomes in good detail, including group means, standard deviations, and sample sizes. Of the 57 SFA studies, most involved quasi-experimental matched-group comparison designs, some as complex as matching individual students across matched comparison schools. Only a handful of studies relied on the less preferred one-group pre-post design. Slightly under half of the outcomes were reported by researchers other than the developer, a rate that is essentially the same as that for the CSR literature as a whole. Most studies of SFA presented outcomes in terms of mean test scores or actual effect sizes rather than as categorical or correlational outcomes. Also, most studies presented the actual sample sizes and group standard deviations. Only occasionally did we have to impute a sample size, and rarely did we have to impute a standard deviation.

Contact information:
Success for All Foundation
200 West Towsontown Boulevard
Baltimore, MD 21204
Phone: 800-548-4998
Fax: 410-324-4444
E-mail: sfainfo@successforall.net
Website: http://www.successforall.net

Talent Development High School

Developer: Center for Research on the Education of Students Placed At Risk, Johns Hopkins University and Howard University.

Primary goal: Improve achievement and other outcomes for at-risk students in large high schools.
Main features:
1. Ninth-grade Success Academy, career academies for Grades 10–12.
2. Core curriculum in a four-period day.
3. Twilight school.

For Grades 9–12. Supporting materials are provided.

Costs:
The 1st-year cost for a school of 500 students to adopt Talent Development High School is $59,382. This cost covers professional development, including teacher release time and stipends, materials, building renovations, discretionary funds, and additional staff. However, schools can reduce this cost by reassigning current staff to fill the role of the half-time organizational facilitators. Costs are derived from Herman et al. (1999).

Narrative summary of the research:
At the time of our search, there was not a great deal of research available for Talent Development High School (TDHS). Through our search, we found 4 separate developer-conducted studies of TDHS. Of those, 1 focused on student achievement as an outcome; the rest focused on implementation, theory, or other outcomes important to TDHS, such as school climate. The evaluation that focused on achievement occurred in a high-poverty, high-minority context in an urban reconstitution-eligible school in Baltimore. The quality of the study was good. Research methods and samples were described clearly; however, standard deviations were not provided for some outcomes. Those outcomes had to be excluded from the meta-analysis. The school analyzed in the TDHS evaluation was compared with other high schools in the district. The data that the study reported and compared were the percentages of students who had passed the Maryland state functional test.

Contact information:
James McPartland
Talent Development High School
3003 North Charles Street, Suite 200
Baltimore, MD 21218
Phone: 410-516-8800
Fax: 410-516-8890
E-mail: jmcpartland@csos.jhu.edu
Website: http://www.csos.jhu.edu/tdhs/index.htm

(continued)
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Learning Network</td>
<td>Developer: Richard C. Owen Publishers, Inc.</td>
</tr>
</tbody>
</table>

Primary goal: Support schoolwide changes in teachers’ theory and practice that lead to improved learning outcomes for children.

Main features:
1. Mechanism for continuous teacher professional development built into each school.
2. Use of classroom observation, action plans, and instructional dialogue as the vehicles for change.
3. Focus on literacy as key curricular area.

For Grades K–8. Teacher handbooks and professional resources are provided.

Costs:
The cost of implementing The Learning Network (TLN) in the 1st year is $77,342. This amount covers the training of two team leaders, travel for The Learning Network coordinator, teacher materials, a literacy seminar, release time for staff, travel expenses for the principal and TLN facilitator to attend TLN annual conference, 2 days with the coordinator, a literacy workshop, and extra costs for contact with TLN. Costs are derived from estimates provided by the developer.

Narrative summary of the research:
The research base on TLN consists of studies of schools with high-minority populations in rural and urban areas in Montana, Colorado, Texas, Florida, and Arizona. The developer produced case reports on schools in various districts. Almost all of the outcome data are derived from studies that employed a one-group pre-post design. More than half of these outcomes were based on a cohort design, and a little more than one fourth used a longitudinal design. One quarter of the outcome data required the imputation of the standard deviation, but most data included information regarding the sample size. Half of the results were based on categorical analyses, slightly fewer than half were based on mean test scores, and a fraction included a mixture of the two types of data.
APPENDIX (Continued)

<table>
<thead>
<tr>
<th>Design</th>
<th>Major Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Learning Centers</td>
<td>Developer: Los Angeles United School District, United Teachers Los Angeles, Los Angeles Educational Partnership.</td>
</tr>
<tr>
<td></td>
<td>Primary goal: Create learning environments where high-quality instruction is supported by a well-organized school strongly connected to its community.</td>
</tr>
<tr>
<td></td>
<td>Main features:</td>
</tr>
<tr>
<td></td>
<td>1. Thematic, interdisciplinary curriculum.</td>
</tr>
<tr>
<td></td>
<td>2. Transitions from school to work and postsecondary education.</td>
</tr>
<tr>
<td></td>
<td>3. Integrated health and human services on site.</td>
</tr>
<tr>
<td></td>
<td>4. Collaborative governance model.</td>
</tr>
<tr>
<td></td>
<td>For Grades Pre-K–12. Materials provided.</td>
</tr>
<tr>
<td></td>
<td>Costs:</td>
</tr>
<tr>
<td></td>
<td>The 1st-year cost for adopting Urban Learning Centers is $176,065. This cost covers professional development, including teacher release time, and additional staff. However, schools can reduce the cost by reassigning current staff member to serve as the part-time coordinator. Costs are derived from Herman et al. (1999).</td>
</tr>
<tr>
<td></td>
<td>Narrative summary of the research:</td>
</tr>
<tr>
<td></td>
<td>The research base on Urban Learning Centers consisted of 3 developer-conducted evaluations of centers in Los Angeles. All results were based on a one-group pre-post design. Two of the studies used a longitudinal design, and the 3rd used a cohort design. The reports did not provide standard deviations and rarely provided student sample sizes. Those omissions necessitated imputation for every outcome included in the meta-analysis. All outcome data were based on mean test scores.</td>
</tr>
</tbody>
</table>

(continued)
Notes

This report was written under funding from the Office of Educational Research and Improvement, U.S. Department of Education (Grant No. OERI–R-117-D40005). However, the opinions expressed do not necessarily represent positions or policies of OERI. The authors thank all 33 of the reform developers for their help in accessing studies and information about their CSR models.

1 Initially, we had identified 33 reform models for possible inclusion in this meta-analysis. Four of the models, however, had no quantitative data on their achievement effects from which we could calculate effect size estimates. The four models were Foxtire Fund, League of Professional Schools, QuEST, and Ventures Initiative and Focus System. The 29 models remaining in the analyses were Accelerated Schools Project; America’s Choice School Design; ATLAS Communities; Audrey Cohen College; Center for Effective Schools; Child Development Project; Coalition of Essential Schools; Community for Learning; Community Learning Centers; Co-nect Schools; Core Knowledge; Different Ways of Knowing; Direct Instruction; Edison Project; Expeditionary Learning Outward Bound; High Schools That Work; High/Scope Primary Grades Approach to Instruction; Integrated Thematic Instruction; MicroSociety®; Modern Red Schoolhouse; Montessori; Onward to Excellence; Paideia; Roots & Wings; School Development Program; Success for All; Talent Development High Schools with Career Academies; The Learning Network; and Urban Learning Centers.

2 This information was obtained from the Southwest Educational Development Laboratory’s CSRP database, which is available on-line at http://www.sedl.org/csrd/awards.html. The data reported here include all schools receiving CSRP awards that began in 1998, 1999, 2000, and 2001. According to the website, the database from which we derived our information was last updated on November 20, 2001. Not all schools reported whether they had been identified for improvement under Title I, state, or local regulations. Therefore, the percentages that we report are probably underestimates.

3 The inclusion criteria of the two catalogs were slightly different but similar to those we used for the purpose of including nationally disseminated, externally developed, comprehensive school reform models. The AIR catalog based its model selection on five criteria: (a) “promoted by their developers as a means to improve student achievement in low-performing schools”; (b) “mentioned by name in federal [CSRP] legislation”; (c) “used in many schools and districts”; (d) “have obtained national visibility in
the educational and national press”; and (e) “there is some research evidence about their
effects on students and/or implementation in schools.” Any reform meeting the second
criterion was included automatically, but other reforms had to meet at least three of the
other four criteria (Herman et al., 1999, p. 7).
Models for the first edition of the NWREL catalog were selected through an open
application process. Any developer requesting an application packet was sent one.
NWREL then chose from among the submitted applications on the basis of criteria sim-
ilar to those of Herman et al. (1999): “Criteria for selecting models included evidence
of effectiveness in improving student academic achievement, extent of replication,
implementation assistance provided to schools, and comprehensiveness” (NWREL,
2000). The selection process for NWREL’s second edition was by invitation only. To
be asked to submit an application for inclusion of their CSR model in the catalog, devel-
opers were required to have had five or more CSRP-funded implementations of the
model. In addition, the model had to be nominated by a state or regional lab CSRP man-
ger or acknowledged by one of several national educational organizations. Submitted
applications were then reviewed on the basis of the criteria outlined previously.

Despite all efforts to obtain the studies from traditional sources (e.g., libraries and
ERIC), from the model developers, and from the authors of the studies, we failed to
obtain 10 studies. Because we had no opportunity to review them, we were not able to
establish whether they would have met our requirements for inclusion in the synthesis.
These 10 studies were distributed across the following CSR models: Accelerated
Schools Project (1); Co-nect Schools (1); Direct Instruction (2); High Schools That
Work (1); Paideia (1); School Development Program (2); and Success for All (2).

Perhaps the most important contextual information, the level or quality of the
model’s implementation, was rarely provided. This is one of the most important deficits
in the research literature on CSR.

The separate types of cohort designs initially coded included: (a) comparing the
outcomes for one grade level (e.g., third graders) in a given year to the outcomes for
the same grade level (e.g., third graders) in a subsequent year; (b) comparing the out-
comes for one grade level in a given year (e.g., third graders in 1999) to the outcomes
for the same student cohort in a subsequent year (fourth graders in 2000); or (c) com-
paring the outcomes for several grade levels (e.g., third through fifth graders) in a given
year to the outcomes for the same grade levels (third through fifth) in a subsequent year.
“True” longitudinal designs are distinguished from all of these in that they track the
same sample of students across each time point. In contrast, the cohort designs have
different, but often overlapping, samples of students at each time point.

To achieve greater consistency between the cost estimates provided by select devel-
opers during 2001 and the cost estimates for other models based on data in the report
by Herman et al. (1999), we adjusted the latter cost estimates to constant 2001 dollars
by using gross-domestic-product implicit price deflators.

By assuming the same number of students and teachers for each model, we were
able to gain greater consistency in the cost estimates. However, readers who wish to
implement a model should be aware that the estimated marginal costs may vary widely
by school, depending on a variety of other factors. Rather than relying on our general
estimates to project costs for implementing a reform in a particular school, we suggest
contacting the developer directly to obtain specific cost estimates.

We did not include long-term effects of the models that are sustained after discon-
tinuation of the program. We confronted one such example for Success for All, which
has been shown to produce sustained effects through the end of eighth grade (Borman & Hewes, 2003). That analysis, however, estimated the sustained effects beyond the discontinuation of the elementary school program in fifth grade. Although analyses of that type are highly important, they offer a different type of information from that offered by the other analyses that are the focus of this review.

10 In some cases, Edison pays additional start-up costs that are above and beyond the district’s or school’s per-pupil allowance. Because these are not marginal costs incurred by the schools or districts, they are not included in our estimate of the cost of implementing Edison.

11 When the correlation between pretest and posttest was not provided, we imputed a pre-post correlation of 0.80. Such cases were so few that we did not include a flag to indicate an imputed value.

12 We also ran the analyses with the original non-Winsorized values and obtained similar results. In the regression analysis, there were some minor changes in the magnitudes of coefficients but not in the direction or level of statistical significance of the results. In the reform-specific analyses, again, all changes were inconsequential, except for three models whose effect size estimates were somewhat larger with the non-Winsorized values. The three models were Direct Instruction, whose estimated effect sizes were 0.06 greater using non-Winsorized values; Paideia, 0.03 greater for all cases and 0.05 greater for comparison-group-only cases and for third-party comparison-group cases only; and Expeditionary Learning Outward Bound, 0.03 greater for comparison-group-only cases.

13 Although four CSR models—Foxfire Fund, League of Professional Schools, QuEST, and Ventures Initiative and Focus System—were dropped from our study for lack of research evidence amenable to analysis, they could be considered among the models for which there is the Greatest Need for Additional Research.

References

Borman et al.

Studies Included in the Meta-Analysis

The following studies are listed by reform model.

Accelerated Schools

America’s Choice

Atlas Communities

Audrey Cohen College

Center for Effective Schools

Child Development Project

Coalition of Essential Schools

Community for Learning

Community Learning Centers

Co-nect

Core Knowledge

Different Ways of Knowing

Direct Instruction

Edison Project

Expeditionary Learning Outward Bound

High Schools That Work

High/Scope

Integrated Thematic Instruction

MicroSociety®

Modern Red Schoolhouse

Montessori

Onward to Excellence

Paideia

Roots & Wings
School Development Program

Success for All

Talent Development High Schools

The Learning Network

Urban Learning Centers

Authors

GEOFFREY D. BORMAN is an Assistant Professor in the School of Education, University of Wisconsin, Madison, and a Senior Researcher in the Consortium for Policy Research in Education, University of Wisconsin, Madison, 1161D Educational Sciences Building, 1025 West Johnson Street, Madison, WI 53706-1796; e-mail gborman@education.wisc.edu. His main substantive research interests revolve around how schools contribute to social stratification and how they can overcome inequality. His primary methodological interests include the review and synthesis of research evidence, the design of quasi-experimental and experimental evaluations of educational innovations, and the specification of school-effects models.

GINA M. HEWES is a Research Assistant at the Johns Hopkins University Center for Social Organization of Schools, 3003 N. Charles Street, Suite 200, Baltimore, MD 21218; e-mail ghewes@csos.jhu.edu. Her research activities and interests revolve around issues of educational equity for disadvantaged and minority students.

LAURA T. OVERMAN is a Research Assistant at the Johns Hopkins University Center for Social Organization of Schools, 3003 N. Charles Street, Suite 200, Baltimore, MD 21218; e-mail loverman@csos.jhu.edu. Her research interests are identifying factors that contribute to urban school success and factors that foster academic resilience in urban schoolchildren.

SHELLY BROWN is an Assistant Professor in the Sociology Department, University of North Carolina, Greensboro, 337 Graham Building, P.O. Box 26170, Greensboro, NC 27402; e-mail slbrown2@uncg.edu or shelly_brown@uncg.edu. Her major research interests are in the area of race and education.